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Abstract. Domain adaptation (DA) solves a learning problem in a target domain by utilizing the training data in
a different but related source domain, when the two domains have the same feature space and label space but
different distributions. An unsupervised DA approach based on iterative landmark selection and subspace align-
ment (SA) is proposed. The proposed method automatically selects source landmarks from the source domain
and iteratively selects target landmarks from the target domain. These well-selected landmarks accurately reflect
the similarity between the two domains and are applied to kernel projection of both source and target samples
onto a common subspace, where SA is performed. In each iteration, target labels are updated by a classifier
that is retrained with the source samples aligned with the target domain. Thus, the distribution of the selected
target landmarks gradually approximates the distribution of the source domain. During landmark selection, the
quadratic optimization functions are constrained such that the proportions of selected samples per class remain
the same as in the original domain, which makes the problem easy to solve and avoids setting hyperparameters.
Comprehensive experimental results show that the proposed method is effective and outperforms state-of-the-
art adaptation methods. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.3.033037]
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1 Introduction
Machine learning has been widely used in many knowledge
engineering areas, including classification, regression, and
clustering. However, most existing approaches are based on
a common assumption that the training data and testing
data are from the same feature space and follow the same
data distribution.1 When the distribution changes, the
performance of the original learning system will degrade.
Therefore, many models require being rebuilt from scratch
with an immense number of training samples. However, in
real-world applications, recollecting the training data is pro-
hibitive owing to the considerable human effort involved.2,3

Moreover, retraining the models without applying the knowl-
edge learned from previous domains or tasks is wasteful.4

To address these issues, the learner must consider the distri-
bution shifts between the two domains, which is the motiva-
tion of domain adaptation (DA).

As a subfield of transfer learning (TL), DA assumes that
the learning system has the same tasks but different domains.
It is intended to employ information from both source and
target domains during the learning process and automatic
adapting.5 There are two main categories of DA methods.
They differ in terms of the labeled samples considered for
the target domain. When a small set of labeled data is avail-
able in the target domain, the problem is semisupervised
DA.6–9 When no labeled data are available in the target
domain, the problem is unsupervised DA.10–13 This paper
focuses on the more challenging problem of unsupervised
DA in visual object recognition. This is because, in

real-world applications, unlabeled target data are often
much more abundant and difficult to annotate.

Two types of methods have proven successful for
unsupervised DA. One type is the instance reweighting
approach,14–19 which minimizes the source and target distri-
butions by reweighting the most appropriate source samples
for the target data. It then trains a classifier on the reweighted
source data. The second type is the feature transformation
approach,20–36 which is intended to find or construct a
common space wherein the distributions of the two domains
are similar. The feature transformation methods are further
divided into two main categories: data-centric methods and
subspace-based methods.37

In recent years, subspace-based DA methods have
attracted considerable research interest. These methods share
the same principles. First, two domain-specific d-dimen-
sional subspaces for the source data and target data are
computed. Then, source and target data are projected into
intermediate subspaces, and the distribution shift is modeled
by seeking the best intermediate subspaces, such as the
method of subspaces by sampling geodesic flow (SGF)12

and geodesic flow kernel (GFK29). In both SGF12 and
GFK,29 a set of intermediate subspaces is used to model
the shift between the two distributions. This can be a costly
tuning procedure. Fernando et al.10 proposed the alignment
of the two subspaces directly in the original space (SA).
However, these two subspaces have no semantic link or sim-
ilarity in the original space. In having no link (similarity),
learning an optimal projection of one onto the other does
not make sense. In the field of DA, the major issue is
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how to find, express, and utilize similarities between the
two domains. Especially for unsupervised DA, where target
labels are not available, a means of achieving DA is a chal-
lenging problem. An intuitive idea is that some well-selected
landmarks in the source and target domains contain the
common knowledge between the two domains. Thus, land-
marks can serve as bridges connecting the source and target
domains.

In this work, a subspace-based feature transformation
method named iterative landmark selection and subspace
alignment (ILSSA) is proposed for the unsupervised DA
problem. Source landmarks are selected from the source
domain based on the maximum mean discrepancy (MMD)
criterion that the selected source landmarks should have
the most similar distribution as the target domain. Target
landmarks are iteratively selected from the target domain
based on the MMD criterion that the selected target land-
marks should have the most similar distribution as the source
domain. When selecting target landmarks, target pseudola-
bels (predicted by the source domain) are used. The role of
these labels is to identify target landmarks so that distribution
similarities of the selected target landmarks and source
domain can be calculated by the MMD criterion.

Source landmarks together with target landmarks are used
to construct a common space that contains the shared knowl-
edge of the source and target domains. The distribution shift
of the two domains can be reduced by mapping all the source
and target samples into this common subspace. Thus, sub-
space alignment (SA) can further reduce the shift between
the two domains in that common subspace, and target pseu-
dolabels will be updated by a classifier trained with the
aligned source samples. In the iteration, with the updated
target-pseudolabels, targeted landmarks will be selected.
The common subspace is also updated by the selected target
landmarks. Ultimately, the common knowledge of the two
domains in that common subspace will be maximized.
Then, all the samples of the two domains are mapped
onto this common subspace and SA is performed, which
causes the distribution shifts between the two domains to
be minimized. Thus, the traditional machine learning method
can be performed later to classify the target domain. In this
approach, our method can not only avoid the cost-tuning
procedure involved by a set of intermediate subspaces but it
also allows the source and target domains to be linked by
landmarks.

To summarize, our paper provides major contributions to
the unsupervised DA problem by the proposed ILS method.
In this paper, it is shown how to automatically select land-
marks from the source domain, and how to iteratively select
landmarks from the target domain when target labels are
unavailable. Moreover, when selecting target landmarks,
target pseudolabels combined with substitution variables are
integrated into a constraint to identify the target landmarks
so that the distribution similarities of the selected target land-
marks and source domain can be calculated by the MMD
criterion. Furthermore, results of comprehensive experi-
ments conducted on standard benchmark datasets for object
recognition show that the proposed method outperforms the
state-of-the-art algorithms by a significant margin.

The remainder of this paper is organized as follows.
Section 2 reviews related work. In Sec. 3, the proposed
method based on ILS and SA is introduced. Section 4

provides experimental details and comparisons with other
unsupervised DA methods for visual object recognition.
The paper is concluded in Sec. 5.

2 Related Work
According to the literature, unsupervised DA methods can be
broadly organized into two types: instance reweighting
methods and feature transformation approaches. As men-
tioned in Sec. 1, feature transformation approaches can be
further divided into two categories: data-centric methods
and subspace-based methods. The methods discussed in
this paper are summarized in Table 1.

Instance reweighting methods14–19 aim to find the most
appropriate source samples and reduce the distribution
shift by reweighting the source samples based on their
relation to the target samples. Dai et al.14 proposed the
TrAdaBoost method, which enables users to employ a
small amount of labeled data to leverage the old data. A
high-quality classification model is therefore constructed
for the data. Since TrAdaBoost14 transfers knowledge
from one source, its performance heavily relies on the
relationship between the source and target. Yao and
Doretto15 extended the boosting framework for transferring
knowledge from multiple sources, and they proposed
the MS-TrAdaBoost method. Sun et al.16 proposed a two-
stage domain adaptation (abbreviated as 2SW-MDA) meth-
odology that combines with the target domain weighted data
from multiple sources based on marginal probability
differences (first stage) as well as conditional probability
differences (second stage). Gong et al.17 proposed a method
(named CDL) that selects samples from the source domain
to create a group of auxiliary tasks, whereas landmarks
explicitly bridge the source and target domains.17 However,
that method only selects samples from the source domain
and leverages them in a semisupervised manner. Instance
reweighting methods are simple to implement. However,
when the domain difference is substantially large, there
will always be some source instances that are not relevant
to the target instances, even in the feature-matching
subspace.38

Data-centric methods are intended to find one unified
or two different transformation matrices that project both
the source and target data onto a domain-invariant space.
Examples include transfer component analysis (TCA23)
and TL via dimensionality reduction (MMDE22), which
project source and target data onto a reproducing kernel
Hilbert space (RKHS). Accordingly, the marginal distribu-
tion of the two domains with respect to the MMD39 is
reduced. Similar to MMDE22 and TCA,23 in joint distribution
analysis (JDA24), not only the marginal distribution but also
the conditional distribution is considered to reduce the joint
distribution in the RKHS. Transfer joint matching (TJM25)
improves upon TCA23 by jointly reweighting instances,
and it finds the common subspace in a principled dimension-
ality reduction procedure to reduce the domain difference.
Meanwhile, scatter component analysis20 finds a representa-
tion by taking the between-class and within-class scatter of
the source domain into consideration. Unlike seeking one
transformation matrix, joint geometrical and statistical
alignment (JGSA26) learns two coupled projections that
project the source domain and target domain data onto
a low-dimensional subspace, whereas the geometrical shift
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and distribution shift are simultaneously reduced. However,
when the two domains have a large discrepancy, the appro-
priate domain-invariant space is extremely difficult to
achieve.

Subspace-based methods reduce the distribution shift by
moving the source and target subspaces closer so that the sub-
space of each individual domain contributes to the final map-
ping. Some subspace-based methods28,29 project the source
and target domains onto a Grassmann manifold, where the
two domains are viewed as two points. Thus, the distance
between the two domains is the geodesic. Specifically,
Gopalan et al.28 proposed a method (SGF) by creating inter-
mediate representations (points along the geodesic on the
Grassmann manifold) of data between the two domains.
The intermediate representations are obtained from sampling
points along the geodesic. GFK29 extends and improves on
SGF by using a kernel-based method that eliminates the limi-
tation of tuning many parameters required in SGF. Unlike
SGF and GFK, SA10 suggests directly reducing the discrep-
ancy between the two domains by optimizing a linear map-
ping function that transforms the source subspace into the
target one.

Subsequently, the subspace distribution alignment
(SDA30) method was proposed based on the concept of align-
ing the distribution as well as the two subspaces. In most
cases, only a subset of the source data has a similar distri-
bution as the target domain, and vice versa, as verified by the
authors of Ref. 31. Furthermore, landmark-based kernelized
subspace alignment (LSA31) is a method of selecting land-
marks from both the source and target domains to construct

a common space for the SA of the two domains. However,
LSA faces three limitations in selecting landmarks. First,
each landmark is computed independently from others
when considering the distribution distance between the
source samples and the target samples. The result is that
the overall distribution of the selected landmarks may not
be close to either the source domain or the target domain.
Second, the distance distribution between a landmark and
the source (or target) domain is approximately assumed to
be a normal distribution. Third, when deciding whether to
select a sample as a landmark, the threshold is a hyperpara-
meter that is set according to experience.

In this paper, an ILS method based on the subspace
method for the unsupervised DA problem is proposed.
These well-selected landmarks accurately reflect the similar-
ity between the target and source domains. Consequently,
the common subspace constructed by these landmarks
maximizes the common knowledge of the source and target
domains, which can therefore avoid negative transfer.1

Prior to the iteration, the target labels are initially estimated
by the classifier trained with the original source samples.
During the iteration, the target labels are updated by the clas-
sifier trained with the source samples that are aligned to
the target domain. Thus, the distribution of selected target
landmarks gradually approximates the source domain distri-
bution. A constraint is added such that the proportions
per class of landmarks remain the same as in the original
data domain. This renders the DA optimization problem
easy to solve and avoids the setting of hyperparameters.
Comprehensive experiments on standard benchmark datasets

Table 1 DA methods in Sec. 2 listing different characteristics of each method.

Approach Adaptation category Target data Applications

TrAdaBoost14 Instance reweighting Limited labels Text classification

MS-TrAdaBoost15 Instance reweighting Limited labels Object recognition

2SW-MDA16 Instance reweighting Unlabeled Text classification

CDL17 Instance reweighting Unlabeled Object recognition

TCA23 Data-centric methods Unlabeled WiFi localization/Text classification

MMDE22 Data-centric methods Unlabeled WiFi localization/Text classification

JDA24 Data-centric methods Unlabeled Object recognition

TJM25 Data-centric methods Unlabeled Object recognition

Scatter component analysis 20 Data-centric methods Unlabeled Object recognition/Synthetic data

JGSA26 Data-centric methods Unlabeled Object recognition

SGF28 Subspace-based Unlabeled Object recognition

GFK29 Subspace-based Unlabeled/Limited labels Object recognition

SA10 Subspace-based Unlabeled/limited labels Object recognition

SDA30 Subspace-based Unlabeled Object recognition

LSA31 Subspace-based Unlabeled Object recognition
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for object recognition demonstrate that our method signifi-
cantly outperforms the state-of-the-art algorithms.

3 Proposed Approach
In this section, the proposed ILSSA method for unsupervised
DA is presented.

3.1 Problem Statement and Overview

Let S ¼ fxsigni¼1, x
s
i ∈ RD denote n samples in the source

domain, let YS ¼ fysigni¼1 denote their labels, and let
T ¼ fxtjgmj¼1

, xtj ∈ RD represent m samples without labels
in the target domain, where D is the dimension of data sam-
ples. The source and target data are assumed to draw the dis-
tributions PðSÞ and PðTÞ, respectively. Unsupervised DA
provides the means to reduce the distribution shift between
the two domains when the target domain labels are unavail-
able and when the source and target domains have the same
feature space and label space but different distributions
[PðSÞ ≠ PðTÞ].

The key task for DA is to reduce the distribution shift
between the two domains.40 Additionally, the essence of sub-
space-based methods for DA is to enable the source subspace
to align with the target one in a common subspace. Thus, the
common subspace plays the critical role of a bridge that
connects the source and target domains. Our key insight
is that some well-selected samples (landmarks) from both
the source and target domains can be considered as the
bridge. These well-selected landmarks have the most similar
distribution as both the domains. Hence, as long as these
landmarks are selected, the common subspace will be
determined.

The successive steps in our approach are illustrated in
Fig. 1. First, source landmarks are automatically selected

from the source domain under the condition that source land-
marks have distributions most similar to the target domain.
Because the target samples have no labels, the source clas-
sifier is used to predict the initial target pseudolabels
(denoted by the dotted lines in “T”). Second, target land-
marks are selected based on the MMD criterion under the
condition that target landmarks have the most similar
distribution to the source domain. Both source and target
domains have the constraint that the proportions of selected
samples per class must remain the same as in the original
domain. The union set of both source and target landmarks
is then projected to construct the common subspace via the
Gaussian kernel. Third, in the common subspace, the source
and target subspaces are obtained using the PCA method.
Then, the source subspace is aligned to the target subspace
using a transformation matrix. After the SA, the representa-
tions of the source and target samples are obtained.

Finally, the original target labels can be updated by the
target labels predicted by the classifier that was trained on
all the aligned source samples. All steps from the second
step to the final step are repeated until the last two target
landmark selections are the same. During the iteration,
common knowledge of both the source and target domains
is integrated into the common subspace constructed by the
selected landmarks. Thus, the distributions of the source and
target domains become increasingly similar.

3.2 Selection Landmarks
A subset of samples selected from both the source and target
domains is a good set of landmarks. These landmarks con-
struct a common kernel subspace, which contains common
knowledge of both the source and target domains. The
sample selection criterion is the distribution similarity
measurement.

Fig. 1 Steps in the proposed approach (in color online).

Journal of Electronic Imaging 033037-4 May∕Jun 2018 • Vol. 27(3)

Xiao et al.: Iterative landmark selection and subspace alignment for unsupervised domain. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 02 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.2.1 Distribution similarity measurement

In the field of TL and DA, MMD is a widely used and effec-
tive nonparametric metric for comparing the distribution
shift based on two sets of data.41 Given the source and target
data S, T, their distributions are PðSÞ and PðTÞ. By mapping
the data to a RKHS using function ϕð·Þ, the MMD (or dis-
tribution distance) between PðSÞ and PðTÞ is defined as in
Eq. (1):

EQ-TARGET;temp:intralink-;e001;63;660MMD2ðPðSÞ; PðTÞ
¼ sup

kϕkH≤1
kExs∼PðSÞ½ϕðxsÞ� − Ext∼PðTÞ½ϕðxtÞ�k2H; (1)

where Exs∼PðSÞ½·� denotes the expectation with regard to the
distribution PðSÞ and kϕkH ≤ 1 defines a set of functions
in the unit ball of an RKHS, H. Based on the statistical
tests defined by MMD, it has MMDðPðSÞ; PðTÞÞ ¼ 0
if PðSÞ ¼ PðTÞ.

To measure the similarity of the distributions between S
and T, the empirical MMD is given by Eq. (2):
EQ-TARGET;temp:intralink-;e002;63;527

MMD2ðPðSÞ;PðTÞÞ¼
����1n

Xn
i¼1

ϕðxsi Þ−
1

m

Xm
j¼1

ϕðxtjÞ
����2
H

¼
�Xn

i;j¼1

1

n2
ϕðxsi Þ�ϕðxsjÞþ

Xm
i;j¼1

1

m2
ϕðxtiÞ

�ϕðxtjÞ−
Xn;m
i;j¼1

2

nm
ϕðxsi Þ�ϕðxtjÞ

�1
2

¼
�Xn

i;j¼1

1

n2
kðxsi ;xsjÞþ

Xm
i;j¼1

1

m2
kðxti;xtjÞ−

Xn;m
i;j¼1

2

nm
kðxsi ;xtjÞ

�1
2

;

(2)

where s and t represent the source domain and target domain,
respectively, and ϕð·Þ is the feature map associated with the
kernel map, kðx1; x2Þ ¼ ϕðx1Þ � ϕðx2Þ. In addition, kðx1; x2Þ
is the kernel function that maps the source and target data to
the RKHS.

3.2.2 Landmark selection in the source domain

To identify the samples that should be selected as landmarks,
each sample in the source domain corresponds to a binary
indicator variable, αsi , where α

s
i ¼ 1 means that the i’th sam-

ple is selected as a landmark, and αsi ¼ 0 means that it is not
selected as a landmark. Thus, for n samples in the source
domain, there are n indicator variables, fαsigni¼1, which
can be represented as αs ¼ ½αs1; αs2; · · · αsn�. The goal is to
choose among all possible configurations of αs, such that
the distribution of the selected landmarks is maximally sim-
ilar to that of the target domain. The most appropriate αs will
be chosen such that the distribution difference of the target
data and the selected source subset is minimized. It can be
denoted as shown in Eq. (3):

EQ-TARGET;temp:intralink-;e003;63;132αs ¼ arg min
αs

���� 1P
n
i α

s
i

Xn
i¼1

αsiϕðxsi Þ −
1

m

Xm
j¼1

ϕðxtjÞ
����2; (3)

where the first term is the distribution expectation of
selected source landmarks and the second term is the

distribution expectation of the target domain. Furthermore,
the constraint that labels are balanced in the selected
landmarks17 is imposed. That is, the proportions of source
samples per class are enforced to remain the same as in
the original domain. For example, suppose there are 100
samples in the source domain, 60 in class A and 40 in
class B. Among the selected source domain landmarks,
class A accounts for 60% and class B accounts for 40%.
For the source domain, this constraint can be written as
in Eq. (4):
EQ-TARGET;temp:intralink-;e004;326;642

1P
n
i α

s
i

Xn
i

αsi yic ¼
1

n

Xn
i¼1

yic;

fyic ¼ 1; ð0Þjyi ¼ c; ðyi ≠ cÞ; ∀ 1 ≤ c ≤ Cg: (4)

Here, c is the index of the class, C denotes the total num-
ber of classes, and yic is a binary variable indicating whether
the i’th sample belongs to class c (e.g., if yi ¼ c, then
yic ¼ 1; otherwise, yi ≠ c, yic ¼ 0). Note that the optimiza-
tion of Eq. (3) requires no labels of target data; only source
sample labels are required.

Owing to the binary constraint on αS, the optimization
problem is intractable. Instead, to solve the relaxed problem
by including another variable, βsi ¼ αsi∕

P
n
i α

s
i , all these var-

iables can be represented by vector βs ¼ ½βs1; βs2; · · · βsn�T.
Obviously, for βsi , it has

EQ-TARGET;temp:intralink-;e005;326;455

�
βsi∶0 ≤ βsi ≤ 1;

Xn
i

βsi ¼ 1; ∀ 1 ≤ i ≤ n

�
: (5)

Substituting βsi into Eq. (3), the source optimization prob-
lem can be expressed as follows:
EQ-TARGET;temp:intralink-;e006;326;384

arg min
αS

���� 1P
n
i α

s
i

Xn
i¼1

αsiϕðxsi Þ −
1

m

Xm
j¼1

ϕðxtjÞ
����2
H

¼ arg min
βS

����Xn
i¼1

βsiϕðxsi Þ −
1

m

Xm
j¼1

ϕðxtjÞ
����2

¼
Xn
i;j¼1

ðβsi ÞTϕðxsi Þ � ϕðxsjÞβsi −
2

m

Xn;m
i;j¼1

ðβsi ÞTϕðxsi Þ

� ϕðxtjÞ þ
1

m2

Xm
i;j¼1

ϕðxtiÞ � ϕðxtjÞ

¼
Xn
i;j¼1

ðβsi ÞTkðxsi ; xsjÞβsi −
2

m

Xn;m
i;j¼1

ðβsi ÞTkðxsi ; xtjÞ

þ 1

m2

Xm
i;j¼1

kðxti; xtjÞ

¼ βTsAssβs −
2

m
βTsBst1m×1 þ

1

m2
1TCtt1; (6)

where Ass ∈ Rn×n is the kernel matrix computed over
the source domain, Bst ∈ Rn×m denotes the kernel matrix
computed between the source and target domains, 1m×1
represents an all-one column matrix, and Ctt is the kernel
matrix computed over the target domain. The selection
of landmarks depends on the kernel mapping ϕð·Þ and
its parameters. When computing the kernel matrix, the
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Gaussian kernel is used. Take an item, ∀ bi;j ∈ Bst, as
example. It can be computed by Eq. (7):

EQ-TARGET;temp:intralink-;e007;63;730bi;j ¼ expf−ðxðsÞi − xðtÞj ÞTKðxðsÞi − xðtÞj Þ∕σ2g; (7)

whereK is a positive semidefinite matrix, the value of ð·Þ is s
or t, and σ denotes the scaling factor for measuring distances
and similarities between data. For the sake of comparison,
for both K and σ, they follow the typical setup as in
GFK29 in our experiments.

Then, combining Eqs. (3)–(7), the optimization problem
is transformed into a quadratic programming problem, as
shown in Eq. (8), and the optimization goal is also trans-
formed from solving αs to solving βs:

EQ-TARGET;temp:intralink-;e008;63;596

8>><
>>:

βs ¼ arg min
βs

�
βTsAssβs − 2

m βTsBst þ 1
m2 Ctt

�
states that

P
n
i β

s
i yic ¼ 1

n

P
n
i yic; 1 ≤ c ≤ CP

n
i β

s
i ¼ 1;0 ≤ βsi ≤ 1

: (8)

After obtaining the solution of βsi , the binary weights αsi
can be obtained by thresholding βsi as in Eq. (9):

EQ-TARGET;temp:intralink-;e009;63;505αsi ¼
�
1; βsi > th
0; βsi ≤ th

; (9)

where th is a very small positive real number. Hence,
the source landmarks are selected and denoted as set
Ls ¼ fxsi jif; αsi ¼ 1gni¼1.

3.2.3 Iterative landmark selection in target domain
and subspace alignment

To enable the source and target domain to share as much
common knowledge as possible, landmarks in the target
domain that have a similar distribution as the source domain
should also be selected.

Similar to the source landmark selection, the samples that
can be selected as landmarks from the target domain should
have their binary indicator variables γt ¼ ½γtj�mj¼1

, where m is
the number of target samples. If γtj ¼ 1, it indicates that the
j’th sample is selected as a target landmark; otherwise, the
sample is rejected. Thus, the target optimization function is
shown in Eq. (10):

EQ-TARGET;temp:intralink-;e010;63;264γt ¼ arg min
γt

���� 1

n

Xn
i¼1

ϕðxsi Þ −
1P
m
j γtj

Xm
j¼1

γtjϕðxtjÞ
����: (10)

Here, the first term is the distribution expectation of the
source domain and the second term is the distribution expect-
ation of the selected target landmarks. Observe that the target
optimization function has a similar form as the source opti-
mization function. However, there are obvious differences
and additional changes required for target landmark selection
because target labels are not available in the unsupervised
DA setting. It cannot be solved in the manner of the source
optimization function. We observe that there are distribution
shifts between the two domains. Nevertheless, the target
pseudolabels predicted by a classifier trained on source sam-
ples can also reflect the real category of the target domain to
some extent. Thus, target pseudolabels are used, and the tar-
get optimization function can be solved in the same manner

as solving the source optimization function under the con-
straint condition in Eq. (11):

EQ-TARGET;temp:intralink-;e011;326;730

1P
m
j γtj

Xm
j

γtjy
t
jc ¼

1

m

Xm
j¼1

ytjc; fytjcjytj ¼ c; ∀ 1 ≤ c ≤ Cg;

(11)

where ytjc is a binary variable and is determined by the target
pseudolabels. If ytjc ¼ 1, it indicates that the label of the j’th
sample belongs to the c’th class; otherwise, ytjc ¼ 0.

Once target landmarks are selected, source landmarks are
added to kernelized mapping of all points onto the common
subspace, where SA is effectively performed to reduce the
distribution shift between the two domains. Because the
common subspace contains shared knowledge between the
two domains, the source and target domains are associated.
Therefore, SA can further reduce the distribution shift. Then,
target pseudolabels can be updated by a classifier trained
with the aligned source samples. Additionally, target pseu-
dolabels are increasingly approximated to the true labels
of the target in the iteration. Next, processes of iterative
target landmark selection and SA are detailed.

In the initial step, a base classifier is trained using the
labeled samples from the source domain. The base classifier
can be any standard learner. In this study, a support vector
machine (SVM), SVMl, is used to predict target labels for
the l’th iteration. The initial target pseudolabels are predicted
by SVM0. Inevitably, some prediction errors occur because
of the distribution shift between the source and target
domains. Then, with the target labels, the classification indi-
cator variable ytjc is substituted by the initial prediction ytðlÞjc ,
l ¼ 0. Equation (10) is optimized to obtain the initial land-
marks of the target domain under the constraint condition of
Eq. (11). This landmark set LðlÞ

t , l ¼ 0 of the target domain is
composed of the samples with the indicator variable γtj ¼ 1.

Both the source landmark set Ls and target landmark set
LðlÞ
t , l ¼ 0 comprise the landmarks set LðlÞ ¼ Ls ∪ Lt, l ¼ 0.

Subsequently, to link the source and target domain as much
as possible, a kernel trick is used to nonlinearly map all the
source samples and target samples onto a common subspace
constructed by these landmarks. In this paper, the Gaussian
kernel is applied, and its standard deviation σ is set to the
median distance between all the source data and target
data.31 Each point xsi from the source data and each target
sample xtj are projected onto each landmark p ∈ LðlÞ, as
shown in Eq. (12):
EQ-TARGET;temp:intralink-;e012;326;238

KSði; pÞ ¼ exp

�
−kxsi − pk2

2σ2

�
;

KTðj; pÞ ¼ exp

�−kxtj − pk2
2σ2

�
: (12)

Thus, in the common subspace constructed by these
selected landmarks, the representations of the source and
target samples are obtained by Eq. (12) and denoted by
KS and KT , respectively.

Even though both the source samples S and target samples
T are mapped onto the same subspace and are linked to each
other, their distributions remain different owing to the shift in
their subspaces. It is necessary to perform an SA to further
reduce the distribution shift. SA involves finding a linear
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transformation matrixM that best aligns the source subspace
coordinate system to the target one. PCA is separately
applied on each domain, and the largest d eigenvectors
XS and XT are extracted as the source and target subspace.
The transformation matrix M is learned by minimizing the
following Frobenius norm shown in Eq. (13):

EQ-TARGET;temp:intralink-;e013;63;686M� ¼ arg min
M

kXSM − XTk2f: (13)

Note that the bases of the source (target) subspace are
orthogonal, XSXT

S ¼ I; hence, the solution of Eq. (13) is
M� ¼ XT

SXT .
The source and target data can be projected onto their

respective subspaces by the operations KSXS and KTXT ,
respectively. Then, the representations of source and target
data in the aligned subspace are obtained by using the
following respective equations:

EQ-TARGET;temp:intralink-;e014;63;560Ps ¼ KSXSM�; PT ¼ KTXT; (14)

where PS and PT are the transformations of representations
of the source and target domains in the aligned target sub-
space. In other words, all samples of both domains are rep-
resented in the same subspace. The classifier is trained using
the transformed samples, PS. This classifier then predicts the
target pseudolabels. With the updated target pseudolabels,
the class indicator variables ytjc in Eq. (11) are updated
and the sample selection indicator variables are obtained
by optimizing Eq. (10) under the constraint condition of
Eq. (11).

Subsequently, the target landmarks LðlÞ
t , l←lþ 1 are rese-

lected according to the sample selection indicator variables,
γtj. The union set of the common subspace is reconstructed as

LðlÞ ¼ Ls ∪ LðlÞ
t , l←lþ 1. The processes of target landmark

selection, common subspace projection, SA, and target label
updating are iteratively performed until Lðlþ1Þ

t ¼ LðlÞ
t .

3.3 Algorithm
In the proposed method, source landmarks are selected
according to the distribution similarity with the target
domain, as described in Sec. 3.2.2. The initial target pseu-
dolabels predicted by a classifier trained on all the original
source samples are used to select the target landmarks under
the MMD criterion. Both source and target quadratic optimi-
zation equations have the constraint that the proportions of
selected samples per class must remain the same as in the
original domain. Then, both the source and target landmarks
are used to construct the common subspace by kernel
projection. Subsequently, all source samples are projected
onto the common subspace and aligned with the target sub-
space. Then, the original target pseudolabels are updated by
the target pseudolabels predicted by a classifier trained on all
the transformed source samples. By repeating the above
process of target landmark selection, source and target
sample projection, and SA, the target pseudolabels can be
iteratively updated. In the iteration, common knowledge of
both the source and target domains is integrated into the
common subspace. Thus, the distribution shift is decreased
at each step.

The complete pseudocode of our ILSSA method is
described in Algorithm 1.

4 Experiments
This section describes the evaluation of the proposed
method. The evaluation was set in the context of object
recognition using standard datasets and protocols for evalu-
ating the visual DA method, as in Refs. 10, 28, 29, and 42.
Additionally, several state-of-the-art methods were com-
pared with our ILSSA method: TCA,23 GFK,29 SA,10

JDA,24 connecting the dots with landmarks (CDL17),
TJM,25 SDA,30 LSA31, return of frustratingly easy
(CORAL32), and JGSA.26 The parameters used in the experi-
ments were recommended by its original papers for all the
baseline methods.

4.1 Datasets and Data Preparation
To evaluate all DA methods, our experiments were con-
ducted on the standard datasets—Office and Caltech10—
which contain four domains. The Office dataset consists
of three different types of real-world object images from
Amazon (denoted by A; images downloaded from online
merchants), Webcam (denoted by W; low-resolution images
obtained from a web camera), and Dslr (denoted by D; high-
resolution images obtained from a digital SLR camera).
Caltech25643 contains 256 object classes downloaded
from Google Images, and the Caltech10 dataset contains
10 classes selected from Caltech256.43 These classes are
common to the three domains of the Office dataset. Each
dataset was treated as a separate domain.

The number of images per class in the four domains
ranged from 8 to 151, and the total number of images in

Algorithm 1 Iterated landmark selection-based SA and classification

Input: Source data S and its labels Ys, target data T , subspace
dimension d

Output: Predicted target labels: bY t

1 Obtain βS by solving Eq. (8) and obtain αS by solving Eq. (9).
Thus, obtain the source landmarks Ls ;

2 Ŷ ðlÞ
t ←SVM0ðS; Y s; T Þ, l ¼ 0; //Use the classifier trained on all

the source samples to predict initial target pseudo-labels.

3 Repeat;

4 Obtain γt by solving Eq. (10), and obtain the target
landmarks LðlÞt . All the landmarks LðlÞ←Ls ∪ LðlÞt ;

Compute KS , KT by Eq. (12); compute XS and XT by
XS←PCAðKS; dÞ and XT←PCAðKT ; dÞ; compute M� by
Eq. (13);

Compute source and target data representations PS , PT by
Eq. (14);

Predict the new target labels: Ŷ ðlþ1Þ
t ←SVMðPS; YS;PT Þ; //Use

the classifier trained by all the transformed source samples in
the aligned target subspace to predict the new target labels;

If Lðlþ1Þ
t ¼¼ LðlÞt go to End; else, Repeat;

5 End
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the four domains was jAj ¼ 958, jCj ¼ 1123, jDj ¼ 157,
and jWj ¼ 295. Owing to its small number of images,
D was not used as a source domain. Thus, by randomly
selecting two different domains as the source and the
other as the target, nine possible domain pairs were con-
structed, such as A→D, C→A, and W→C. All experiments
followed the standard procedures for feature extraction and
experiment protocols of Refs. 10, 28, 29, and 42. The SURF
features were quantized into an 800-bin histogram with
codebooks computed via K-means on a subset of images
from Amazon.com. Then, the histograms were normalized
and the z-score was applied such that there was a zero
mean and unit standard deviation in each dimension within
each domain.

4.2 Experimental Setup
For subspace-based unsupervised DA methods, optimal sub-
space dimensions are important and should be automatically
selected. In this study, the subspace disagreement measure
(SDM)29 based on selected landmarks was used to automati-
cally find optimal dimensions. In the experiments, a selection
of dimensions from two ways was established: the optimal
dimensions found by landmark-based SDM (ISLSA-
AdaPCA) and dimensions (10–20), which are widely used
by other (SA,10 LSA,31 SDA30) subspace-based DA methods
(ISLSA-PCA).

For the method of ISLSA-AdaPCA, landmarks selected
from the source and target domain contained common
knowledge of the two domains. Thus, the common subspace
(PCAL) constructed by theses landmarks had similarity with
both the source subspace (PCAS) and target subspace
(PCAT). Intuitively, if two datasets have similar landmarks,
then all three subspaces should not be too distant from each
other. SDM captures this notion and is defined in terms of
the principal angles, DðdÞ ¼ 0.5ðsin αd þ sin βdÞ, where αd
denotes the d’th principal angle between the PCAS and
PCAL, βd denotes the d’th principal angle between the
PCAT and PCAL. In addition, sin αd or sin βd is called
the minimum correlation distance.44

Note thatDðdÞ is at most one. A small value indicates that
both αd and βd are small; thus, PCAS and PCAT are aligned
at the d’th dimension. If DðdÞ ¼ 1ðαd ¼ βd ¼ π∕2Þ, the two
subspaces have orthogonal directions. In this case, PCAL has
almost no similarity with PCAS and PCAT. Hence, DA will
become difficult because variances captured in one subspace
will be unable to transfer to the other subspace. To identify
the optimal dimension, d, a greedy strategy is adopted:

EQ-TARGET;temp:intralink-;sec4.2;63;232d� ¼ minfdjDðdÞ ¼ 1 − ε; ε > 0g;
where ε is a very small positive real number. Intuitively, the
optimal d� should be as high as possible to preserve varian-
ces in the source domain for the purpose of building good

classifiers. Nonetheless, it should not be so high that the
two subspaces start to have orthogonal directions.

To confirm the validity of our landmark-selection-based
method, three baselines methods were conducted:

(1) Selecting landmarks randomly (RD): Randomly
select 300 landmarks from the source and target
domains (150 for each domain) to construct the
common kernel space and repeat the selection task
five times to obtain the average behavior.

(2) Selecting all the source and target samples (ALL):
In this setting, all samples are used to construct
the common kernel space.

(3) Our method without iteration (ILSSA-0): The initial
target labels are used to solve Eq. (9), only Ls and
Lð0Þ
t are used to construct the common space, and

SA is performed only once.
(4) ILSSA: Our proposed method for ILSSA.

Distribution similarity is central to the landmark-based
method and SA. Therefore, verification experiments on
distribution similarities were conducted. In addition to
the baselines, our method was compared with a series of
state-of-the-art methods that were proposed recent years.
All results were obtained under the published procedures
with parameters given in the respective papers.

For a fair comparison, all experiments followed the same
evaluation protocols.17–31 SVM with a linear kernel was
trained on the labeled source data and tested on the unlabeled
target data. In the experiments, when selecting landmarks,
for both K and σ in Eq. (6), the CDL17 experimental
setup was followed. Kernel matrix K for computing the
distances was chosen as the kernel from the GFK method29

using all instances, and σ were chosen as σq ¼ 2qσ0, where
q ∈ f−6;−5; · · · ; 5;6g. The σ0 is the median distance
computed over all pairwise data in Eq. (6). When using
the landmarks to construct the Gaussian kernel common
space, the standard deviation σ was set to the median dis-
tance between all the source data and target data.

4.3 Experimental Results and Analysis
4.3.1 Optimal dimension selection and

comparison with baselines

The experimental results of using the optimal dimensions
found by landmark-based SDM (ISLSA-AdaPCA) and
dimensions widely used by other (SA,10 LSA,31 SDA30) sub-
space-based DA methods (ISLSA-PCA) are reported in
Table 2. In the table, it is observed that the results of
ISLSA-AdaPCA are better than those of ISLSA-PCA in
almost all of the subproblems.

Furthermore, the correlation of SDM and the accuracy
with respect to dimensions is shown in Fig. 2 (the left

Table 2 Accuracy (%) compared with different subspace dimensions.

Method A→D A→W A→C W→A W→D W→C C→A C→D C→W Average

ISLSA-PCA 43.31 43.4 44.1 37.27 87.9 32.59 56.05 53.5 49.49 49.71

ISLSA-AdaPCA 45.10 44.41 44.43 37.58 87.9 33.04 56.68 54.91 51.59 50.63
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side is the subproblem of C→A; the right is W→C). In Fig. 2,
the horizontal axis is the subspace dimensions; the right
vertical axis reports accuracies; and the left vertical axis
reports the SDM values. As the dimension increases,
SDM rises quickly and eventually reaches its maximum
value of one owing to the geometric structures of bases.
Meanwhile, as the dimension increases, the DA accuracy
gradually increases until the SDM is very close to one.
Then, the accuracy begins to decline until it converges to
a smaller value. Similar trends are observed on other subpro-
blems. Thus, the optimal dimension should be a point, where
SDM is no more than one and the dimension may not be too
small to preserve variances in the source data.

Note that the optimal dimension d� selected by SDM is
usually in the range of [25,35]. It is larger than dimensions
(10 to 20) used on other subspace-based DA methods (SA,10

LSA,31 and SDA30). Therefore, to better highlight the effec-
tiveness of our method, and for the sake of a fair comparison,
the later experiments will be conducted by using the dimen-
sion (d ¼ ½10; 20�) as SA10 and LSA.31

The classification results of our ILSSA method and the
three baselines are reported in Table 3. From the results,
it can be observed that the ILSSA method significantly
outperforms the other baselines. The average classification
accuracy of ILSSA is 49.74%. Among the nine DA tasks,
ILSSA achieves the highest accuracy in seven subproblems.

Note that the baselines “RD” and “ALL” perform no
adaptation, because they only randomly select some samples,
or they roughly use all the samples to define the common
subspace. They do not aim at specifically moving the distri-
butions close to each other. Thus, the accuracy of RD is

lower than those of both ILSSA-0 and ILSSA, which indi-
cates the importance of selecting good landmarks. Moreover,
our method outperforms the noniteration method ILSSA-0
(target landmarks are selected with the target initial pseudo-
labels; kernel mapping and SA are performed only once) by
a large margin. It justifies the effectiveness in iteratively
selecting better target landmarks and refining the target
pseudolabels.

The convergence property of ILSSA is also evaluated in
Fig. 3. It is shown that, with each iteration, the classification
accuracy gradually increases until it converges to an opti-
mum value. This result shows that, in the iteration, better
target landmarks are selected, which enables the common
subspace to contain more shared knowledge. Then, after
SA, the distribution of source and target domains becomes
smaller and smaller. Therefore, the accuracy is increased in
each iteration.

4.3.2 Comparison with landmark selection methods

We compared our proposed method with two state-of-the-art
landmark selection methods (LSA31 and CDL17). In LSA,31

each landmark is computed independently from others when
considering the distribution similarity with the source data
and the target data. For CDL,17 landmarks are selected
only from the source domain to create a group of auxiliary
tasks, where landmarks explicitly bridge the source and
target domains in a semisupervised manner.

Table 4 illustrates the results. For better interpretation, the
results are also visualized in Fig. 4. In the figure, it is worth
noting that ILSSA significantly outperforms CDL and LSA

Fig. 2 Selecting the optimal dimensionality d with SDM and the accuracy (in color online).

Table 3 Accuracy (%) on Office and Caltech datasets compared with three baselines.

Method A →D A→W A→C W→A W→D W→C C→A C→D C→W Average

RD 38.8 40.3 42.3 32.9 84.0 28.4 47.5 41.2 40.6 44.00

ALL 39.4 41.0 44.7 33.0 85.3 33.0 49.6 41.4 41.6 45.44

ILSSA-0 40.8 41.7 40.3 34.1 84.0 29.9 46.1 39.4 45.8 44.68

ILSSA 43.3 43.4 44.1 37.3 87.9 32.6 56.1 49.5 53.5 49.74
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in seven out of nine DA subproblems. For the other two
subproblems (A→C and C→A), the ILSSA results are
very close to the best results. Moreover, ILSSA gains a sig-
nificant performance improvement of 3.93% compared
to CDL and 2.9% compared to LSA. This performance
can be attributed to its advantages, which are outlined as
follows. (1) For the unsupervised DA problem, labeled
data are only available in the source domain. Therefore,
CDL only selects landmarks from the source domain for
DA. Meanwhile, ILSSA uses source domain classifiers to

predict target pseudolabels and updates target pseudolabels
during iterations. Landmarks are used to construct the
common subspace emerging between the source domain
and the target domain. Thus, the two domains are associated
by that common subspace. (2) When selecting landmarks,
ILSSA takes the overall distribution similarity of selected
landmarks into account, whereas LSA independently com-
putes each landmark’s similarity. This verifies that ILSSA
can identify more effective and adaptable landmarks for
the unsupervised DA problem.

Fig. 3 Accuracy with respect to iterations.

Table 4 Accuracy (%) compared with the LSA method.

Method A→D A→W A→C W→A W→D W→C C→A C→D C→W Average

CDL17 42 41 43.8 34.9 73.3 27.6 56.4 46.5 46.8 45.81

LSA31 38.2 42.7 44.2 36.0 86.0 30.5 52.3 49.7 42.0 46.84

ILSSA 43.3 43.4 44.1 37.3 87.9 32.6 56.1 49.5 53.5 49.74

Fig. 4 Recognition accuracy of LSA, CDL, and ILSSA.
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Furthermore, the effectiveness of ILSSA by inspecting
the distribution distance was verified. For each DA pair,
the MMD distance between the selected landmarks and the
source (target) domain was computed. Note that a smaller
distribution distance implies better generalization perfor-
mance of the feature representation across domains in the
common subspace. The results are shown in Fig. 4. Red rep-
resents our ILSSA method; blue represents LSA. The sym-
bols of a circle (o) and star (*) indicate the MMD distance
between the selected landmarks and the source (and the
target) data, respectively, while the plus sign (+) indicates
the average MMD distance of both the domains and the
selected data.

Figure 5 shows that, for each identical symbol, almost all
of the red is below the blue except for W→D. As these two
domains have the least amount of data, there is an inclination
to use all samples for adaptation (the total number of W and
D is 452: LSA uses 448, and our method uses 274). This

demonstrates that our iterative method selects better land-
marks that have closer distributions to both the source and
target data than LSA. This is the primary reason that our
approach achieves better performance than LSA.

4.3.3 Comparison with state-of-the-art methods

Table 5 reports the results of the experimental comparison
between state-of-the-art methods based on subspace. For bet-
ter visualization, the results are shown in Fig. 6, where red
symbols indicate the methods for achieving the best perfor-
mance for each subproblem, and blue symbols indicate
the methods for achieving the worst performance in each
subproblem. It is observed in Fig. 6 that ILSSA achieves
significantly better performance than the state-of-the-art
methods. In terms of the best and worst results, ILSSA
achieves the four best performances and none of the worst
performances. From Table 5, we note that the results of
JDA24 and JGSA26 are close to ours. Although the average

Fig. 5 MMD between the selected landmarks and the source (and target) domain for LSA and ILSSA
(in color online).

Table 5 Accuracy (%) compared with other state-of-the-art methods.

Method A→D A→W A→C W→A W→D W→C C→A C→D C→W Average

TCA23 39.1 40.1 40 40.2 77.5 33.7 46.7 41.4 36.2 43.88

GFK29 40.1 37.0 40.7 27.6 85.4 24.8 46.0 40.8 37.0 42.13

SA10 38.8 39.6 39.9 39.4 77.9 31.8 46.1 39.4 38.9 43.53

JDA24 40.1 46.8 44.0 39.0 85.4 33.6 54.6 47.1 51.9 49.17

TJM25 40.8 46.8 40.3 31.6 84.7 32.0 43.6 43.3 41.0 44.90

SDA30 33.8 30.9 39.5 39.3 75.8 34.7 49.70 40.1 39.0 42.53

CORAL32 38.3 38.7 40.3 37.8 84.9 34.6 47.2 40.7 39.2 44.63

JGSA26 47.1 54.6 41.1 40.6 71.3 30.6 55.7 48.4 51.5 48.99

ILSSA 43.3 43.4 44.1 37.3 87.9 32.6 56.1 49.5 53.5 49.74
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result of ILSSA is only slightly better than JDA,24 it achieves
four of the best performances on nine subproblems, whereas
JDA24 achieves only one. JGSA26 achieves three of the best
performances, whereas our average accuracy is higher than
those of all cited methods.

JDA24 applies statistical properties (marginal and condi-
tional distribution) to seek a unified common subspace in
a principled dimensionality reduction procedure. JGSA26

applies statistical and geometrical properties to learn two
coupled projections that project two domain data items
into low-dimensional subspaces, where SA is performed
to reduce the domain shift. However, as mentioned earlier,
data-centric methods (e.g., JDA24 and JGSA26) will fail
when the two domains have a large discrepancy. This is
because such a low-dimensional common subspace may
not exist, where the statistical distributions of two domains
are the same and the data properties are also maximally pre-
served. ILSSA selects landmarks similar to both domains to
construct the intermediate common subspace related to both
the source and target domains. Thus, the common subspace
serves as a bridge between the two domains, wherein

performing SA can further reduce the domain shift. Hence,
it is direct and effective.

The runtime complexities on the top five DA methods
(ILSSA, JDA,24 JGSA,26 TJM,25 CORAL32) were evaluated
on all DA pairs with their SURF features. All experiments
were run by MATLAB-2016b on a system with Windows
10, and the CPU version was an Intel(R) Core(TM) i7-
7700 CPU @3.6 GHz.

The results are reported in Table 6. From the average run-
time, CORAL32 achieves the best results, followed by TJM,25

JDA,24 JGSA,26 and ILSSA. CORAL32 aligns the input
feature distributions of the source and target domains by
exploring their second-order statistics. Thus, it only requires
computation of the covariance statistics in each domain and
applying the whitening and recoloring linear transformation
to the source features. ILSSA solves two constrained
quadratic programming functions. Its performance depends
on the number of iterations. Thus, it requires the most
time. Both TJM and JDA involve computing the kernel
matrix and solving the generalized eigen-decomposition
problem. However, TJM25 applies a low-rank approximation

Fig. 6 Accuracy shown in a box-plot comparison of the proposed method and other state-of-the-art
approaches. Red (blue) symbols indicate the methods for achieving the best (worst) performance in
each subproblem (in color online).

Table 6 Time complexity of ILSSA and the top five methods.

Runtime (s) A→D A→W A→C W→A W→D W→C C→A C→D C→W
Average
runtime

Average
accuracy

TJM25 8.16 9.58 25.78 8.36 1.39 10.32 27.83 12.25 14.12 13.09 44.9

JDA24 22.59 27.55 69.18 25.43 3.66 32.02 71.89 29.96 35.4 35.3 49.17

CORAL32 0.56 0.59 0.76 0.72 0.55 0.76 0.71 0.54 0.58 0.64 44.63

JGSA26 37.28 44.87 112.40 40.21 5.96 52.37 114.19 44.83 57.66 56.64 48.99

ILSSA 61.14 78.85 185.12 135.58 32.77 156.75 170.91 68.19 85.91 108.34 49.74
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to solve the optimization function. Therefore, its complexity
can be greatly reduced. JGSA is ∼1.6 times slower than
JDA.24 This is because JGSA26 simultaneously learns two
mappings, and the matrix size for eigen-decomposition is
doubled compared to JDA.24 Although ILSSA has a longer
running time than other methods, its average accuracy is
the highest.

5 Conclusion
This paper proposed the ILSSA method for the unsupervised
DA problem. ILSSA automatically selects source landmarks
from the source domain and iteratively selects target land-
marks from the target domain. These well-selected land-
marks are used to construct the common subspace, where
the landmarks’ distribution similarity with both the domains
has a significant impact on the prediction performance of
the target samples. The proposed method estimates the initial
target pseudolabels using the original source classifier and
then updates them using a classifier trained with the source
samples that are projected to the common subspace and
aligned with the target domain. The target sample prediction
errors decrease during iteration, such that some target
landmarks can be selected and have smaller distribution
shift with the source domain. The balance of the number
of selected samples in each class in both domains is used
as the constraint condition for the MMD function, making
the MMD function a quadratic optimization function.
Comprehensive experimental results demonstrate that ILSSA
is effective and it outperforms state-of-the-art adaptation
methods.
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