
2019/3/17 1

Visual Tracking by Structurally Optimizing
Pre-trained CNN

Chang Liu, Peng Liu, Wei Zhao, and Xianglong Tang

Abstract—In this paper, we propose a novel channel pruning
method for convolutional neural network (CNN)-based trackers.
Pre-trained CNNs are widely used in visual tracking to obtain
high-level representations of targets. However, most pre-trained
CNNs are trained for other tasks (e.g., VGGNet is trained for
image classification), and they require a considerable amount of
time to generate features. First, we introduce a dimensionality
reduction method considering the information amount and track-
ing errors to obtain good low-dimensionality features from the
last convolutional layer for tracking. Then, a backward channel
selection method is proposed to select representative channels
layer by layer. In this process, we aim to minimize the target
changes and maximize the loss of the background or other
objects. Finally, we reconstruct the neural network weights to
reduce the information loss of the target with one-shot learning.
Experimental results on challenging benchmarks show that the
proposed channel pruning method can enhance the tracking
performance and reduce the computational requirements.

Index Terms—Visual tracking, channel pruning, dimensional-
ity reduction, one-shot learning.

I. INTRODUCTION

V ISUAL tracking, which plays a significant role in com-
puter vision, is an important research area that has

attracted considerable attention in recent years [1]–[7]. Owing
to improved performance, visual trackers have been employed
in various applications, such as video surveillance and au-
tonomous driving. Nevertheless, visual tracking remains chal-
lenging because the only knowledge about the target is the
bounding box in the initial frame, and the tracking process
involves several issues, such as scale variation, occlusion,
deformation, and illumination variation.

Tracking methods include generative [8] and discriminative
[9] methods. Generative trackers focus on modeling the target
and searching for the most similar patch in the next frame.
Discriminative trackers learn a classifier for discriminating the
target from the background. Correlation-filter-based methods
[10], [11] are the most well-known and effective discriminative
methods owing to their high accuracy and speed. Deep-
learning-based tracking methods [12], [13] have rapidly de-
veloped in recent years. Convolutional neural networks (CNN)
are commonly used for feature extraction. CNN features show
better discriminant ability than hand-crafted ones [14], [15].

Owing to the lack of a large amount of labeled tracking
videos, pre-trained CNNs, such as AlexNet [16] and VGGNet

This work was supported by the National Natural Science Foundation
of China under Grant 61671175, 61370162 and 61672190. (Corresponding
author: Wei Zhao.)

The authors are with the Department of Computer Science, Harbin Institute
of Technology, Heilongjiang 150001, China (e-mail: magicallc@126.com;
pengliu@hit.edu.cn; zhaowei@hit.edu.cn; tangxl@hit.edu.cn).

Fig. 1. Features extracted from pre-trained and channel-pruned networks. The
first and second rows are from the first and 300th frames, respectively. The first
column shows the input patches sampled from the original images. The second
and third columns show the features obtained from layer Conv4-3 of pre-
trained and channel-pruned VGG16 networks, respectively. For visualization,
the summation of all feature maps in that layer is calculated by element,
and then the summation map is normalized to represent the feature. The
target regions are labeled with circles. After channel pruning, the network
can generate better representations of the target.

[17], are widely used in a number of trackers. However, such
networks are trained for other tasks. For example, VGG is
trained to classify numerous types of objects. It is inconsistent
with tracking tasks in which an instance of a single type
of object is to be tracked in each video [18]. Consequently,
trackers with CNN features are prone to drifting to other
similar objects when the target changes [19]. Another problem
is that pre-trained CNNs are generally large-scale and with
massive parameters. Moreover, CNN feature extraction is a
time-consuming task that requires considerable computational
resources.

Recently, deep compression methods [20] have become
increasingly popular. They aim to compress deep neural net-
works for embedded systems with limited hardware resources,
such as mobile applications. By using network pruning, net-
work quantization, and coding, compressed networks can
achieve considerable speedup and high energy efficiency with-
out a significant loss of accuracy. Shallower layers in CNNs
have greater redundancy, whereas deeper layers have important
information to discriminate different object types and are
more difficult to compress [21]. Accordingly, common deep
compression methods focus on reducing the redundancy in
shallow layers and ensuring that the information in deep layers
remains unchanged. However, in visual tracking problems,
only a single target should be tracked in a video. The deep
layers in CNNs are redundant, and the redundancy features
will cause trackers to drift. Hence, it is necessary to compress
CNNs for visual tracking.

2019/3/17 2

A significant challenge in compressing CNNs for visual
tracking is that only one labeled sample is given. Common
deep compression methods use numerous samples to compress
the network and then use all the samples to fine-tune the com-
pressed model to ensure the representation ability. However,
the use of only one sample can easily lead to over-fitting
when the network is compressed. When the target changes,
the compressed model may not recognize it.

The objective of this study is to optimize the structure of
pre-trained CNNs for visual tracking by means of a channel
pruning method [21]. We aim to achieve the best CNN
performance and transform the original network into a visual
tracking problem without extra fine-tuning. A lightweight
CNN is obtained by compressing a pre-trained CNN. The
compressed CNN can generate better features for a specific
tracking target more efficiently than the pre-trained CNN. In
deep layers, different channels reflect different semantics of
different objects. For visual tracking, the semantic information
of the target is a valuable feature, whereas that of the other
objects is noise. Hence, pruning of deep layers is useful
for discriminating the target from objects of other types. In
shallow layers, channels contain detailed edge or texture infor-
mation of all objects. Too many channels would be redundant
because some channel features can be represented by other
channel features. Hence, pruning of shallow layers is useful
for discriminating the target from similar objects. Thus, good
features can be learnt by optimizing the structure of CNNs.
The reconstruction of layer outputs is the most significant
task in deep compression. If the amount of information in
the output is small, the network layer output can be easily
pruned and reconstructed. In visual tracking, channels in deep
layers contain considerable information for describing other
objects besides the target. Reconstructing such information
is unnecessary and detrimental to visual tracking. Therefore,
in contrast to the compression strategy of common deep
compression methods, which compress the networks layer by
layer forward, we conduct the procedure backward.

First, we reduce the dimensionality of the last output layer
for tracking. The last output layer is directly used for tracking.
Even with only one sample, we can select feature maps favor-
able for tracking a specific target. Thus, the target is easier to
track and we do not need to reconstruct the information of the
unfavorable feature maps in the next compression procedure.
The compression ratio can be increased and the learning prob-
lem with one sample is simplified. Moreover, after selecting
good channels for tracking in the last layer, we can gradually
increase the favorable information in the procedure of pruning
the front layers. Then, channel selection is processed layer
by layer. Our objective is not only to preserve the target
information in deep layers but also to reduce the information
of the background and other objects. The process is conducted
backward, and the information loss for reconstruction is mini-
mized. After obtaining the reduced network, we reconstruct the
remaining weights with one sample to reduce the information
loss of the target in the channel selection process and enhance
the robustness in case the target changes. This procedure is
run forward, and the recovery error can be compensated when
reconstructing the following layers. Finally, the kernelized cor-

relation filter (KCF) tracker is used to demonstrate the effect
of the features extracted from the pruned network. Figure 1
shows the effect of channel pruning. The first column shows
the image patch sampled at the position of the target. The
second column shows the features extracted from layer Conv4-
3 of the pre-trained VGG16 network. The third column shows
the features obtained from the compressed VGG16 network.
For visualization, the summation of all feature maps in that
layer is calculated by element, and then the summation map
is normalized to represent the feature. The first row is from
the first frame, and the second row is from the 300th frame.
The corresponding target regions are labeled with circles. The
target feature is not obvious when extracted from pre-trained
networks. However, with channel pruning, favorable channels
are selected and the target is easier to track.

Our contributions can be summarized as follows:
–We propose a dimensionality reduction method that selects

good feature maps in the last convolutional layer and reduces
the dimensionality for efficient tracking.

–We explore a backward channel selection method that
drops redundant channels, preserves the target information,
and reduces the background information simultaneously, with
only one sample.

–We introduce a one-sample weight reconstruction method
that reduces the target information loss and preserves the
network robustness after compression.

The remainder of this paper is organized as follows. Section
II reviews related studies. Section III presents the problem
formulation and theoretical details. Section IV presents and
analyzes the experimental results of the proposed method.
Finally, Section V concludes the paper.

II. RELATED WORK

Recent years have witnessed significant advances in visual
tracking. In this section, we briefly introduce the methods re-
lated to this study, including the generative and discriminative
models in visual tracking. Further, we review the development
of deep learning technology in visual tracking as well as deep
compression methods.

A. Generative and Discriminative Trackers

Visual tracking methods can be classified into generative
and discriminative methods.

Generative methods learn the appearance model of the target
and search for the most similar candidate in the next frame.
Incremental visual tracking (IVT) [8] learns a low-dimensional
subspace representation of the target. Local orderless tracking
(LOT) [22] segments the target into superpixels and explores
the local orderless representation. Sparse-representation-based
methods [23] contribute significantly to the generative domain,
as they facilitate the learning of robust representations. In
[24], sparse representation has been combined with circulant
samples. Generative trackers lack utilization of background
information. Their precision is reduced considerably when
the target is severely deformed, occluded, or in a cluttered
background.

2019/3/17 3

Recently, discriminative trackers have shown better perfor-
mance in terms of accuracy and speed compared to generative
trackers [1], [2]. They learn a classifier to discriminate the
target from the background. Multiple instance learning has
been used in [9], while a structured SVM has been used in
[25]. The most prominent methods are correlation-filter-based
methods. The fast Fourier transform (FFT) was proposed for
target tracking in [26]. Subsequently, high-speed performance
was achieved by using circulant samples, training the classifier,
and detecting the target with FFT [10], [27]–[29]. High-speed
operation allows the use of better features and leads to high
accuracy. In [30]–[32], the authors focused on solving the
bound effect of correlation filters.

B. Deep Learning in Visual Tracking

Deep learning technologies have been successfully adopted
in many domains. A number of significant studies have re-
cently investigated visual tracking. Wang [12] used a stacked
denoising autoencoder for online tracking. Hong et al. [33]
obtained features using a CNN and tracked the target with
an SVM; however, their approach is inefficient. Owing to
the high speed of correlation-filter-based trackers, pre-trained
CNNs are widely used to extract features [14], [15], [34]–[36].
GOTURN [37] constructs deep regression networks and can
track 100 frames per second (FPS). However, its precision is
low. Fully convolutional Siamese networks [38] track the target
with Siamese networks that can generate consistent features
for different sizes of image patches. A convolutional layer is
used to realize the correlation operation. The speed achieved
by this method in GPU is comparable with that of correlation
filters. An end-to-end representation can be learned instead of
using pre-trained CNNs [18]. YCNN [39] connects two-flow
inputs with full connected layers and gets a network with ’Y’
shape. However, re-training CNNs requires a large amount of
labeled videos and offline computational resources. CREST
[40] uses spatial and temporal residual layers to learn better
representations. EAST [41] learns policies for tracking with
shallow CNN layers in advance. Gao et al. [42] proposed
a novel relative tracker that exploits the relative relationship
among image patches. Chi et al. [43] learned dual networks on
the basis of different layers of pre-trained CNNs. Many other
state-of-the-art deep learning technologies are employed in
visual tracking, such as recurrent neural networks (RNN) [44],
reinforcement learning [45], [46], attention [47], adversarial
learning [48], and region proposal network (RPN) [49].

C. Deep Compression Methods

Deep compression aims to reduce the storage and energy
requirements of deep neural networks. This issue has become
increasingly important with the rapid development of mobile
devices. Networks can be compressed from three perspec-
tives: network pruning, network quantization, and coding [20].
Quantization and coding are mainly used to reduce the network
storage. Network pruning focuses on simplifying the network
structure. It mainly involves sparse connection [50], tensor fac-
torization [51], and channel pruning [21]. Sparse connection
methods deactivate connections between neurons or channels,

and they can achieve a high speed-up ratio. However, it is
difficult to implement sparse convolutional layers, which re-
quire a large number of samples. Tensor factorization methods
factorize a convolutional layer into several layers, especially
the efficient 1 × 1 convolutional layer. The network parameters
can be reduced, but extra computation overhead is incurred.
Channel pruning methods directly remove channels and the
corresponding network connections. Channel pruning is easier
to implement and achieves greater weight reduction than the
other two methods. However, the network output might be
damaged. Li et al. [52] pruned filters with smallest sum
values. To recover the original accuracy, the model needs to be
retrained every time a layer is pruned. Luo et al. [53] pruned
filters and channels on the basis of static information computed
in the next layer. He et al. [21] used LASSO regression to
select channels that minimize the output change of the current
layer. This method can achieve similar accuracy compared
to the original model without fine-tuning. However, 50000
samples are required to prune the channels without damaging
the model output. XNOR-Net [54] proposed to represent each
weight parameter and activation with 1-bit. The efficiency
was improved greatly, whereas the accuracy degradation was
severe. Liu et al. [55] proposed the Bi-Real Net, optimized the
training algorithm, and improved the performance of XNOR-
Net. Learnet [19] uses a deep compression method in visual
tracking. The authors employed tensor factorization to reduce
the size of the output space and a one-shot meta-learning
method to learn the reduced parameters of a layer. However,
they also used a sampling method to generate large numbers
of image patch pairs to update the parameters on the basis
of gradient descent. Further, they learned additional filter
weights for the pupil network to recognize objects of the
same type. Thus, they showed that deep compression increases
the feasibility of one-shot learning and it can be effective
for a specific task. However, the improvement in tracking
was insignificant. Therefore, we investigate how to improve
the tracking performance and aim to highlight the target and
reduce the background information using deep compression
technology.

III. PROPOSED APPROACH

In this section, we first introduce the kernelized correlation
filter (KCF) tracker. The KCF is used to construct a tracking
loss to help select channels, and it is implemented for the final
tracking. Then, we present the proposed dimensionality reduc-
tion method for the last layer, the backward channel selection
method, the one-sample weight reconstruction method, and the
entire tracking method with channel pruning. Figure 2 shows
the framework of the entire channel pruning process.

A. Kernelized Correlation Filters Tracking

Henriques et al. [10] considered object tracking as a ker-
nelized ridge regression problem. With circular samples X =
[x1, · · · ,xn]T and corresponding labels y = [y1, · · · , yn], a
ridge classifier y = f(x) is learned. xi, i = 1, .., n are all
generated circularly from a base x. yi, i = 1, ..., n are deter-
mined by a Gaussian distribution. Here, we briefly introduce

2019/3/17 4

Fig. 2. Framework of the proposed channel pruning method for visual tracking. In the first frame, with the only sample, channel pruning is conducted with
dimensionality reduction, channel selection, and weight reconstruction in order. In the next frames, the pruned network generates features for tracking.

the training and detection methods. Detailed information can
be found in [10].

With the kernel strategy and the special characteristic of the
circular matrix, the regression can be trained efficiently in the
Fourier domain:

Fα =
Fy

F(kxx) + λ
(1)

where F denotes the Fourier transformation, α is the kernel
parameter of f , kxx is the self-kernel correlation of x, and λ
is a regularization parameter. The target can be detected in a
new sample z:

y = F−1(F(kxz) · Fα) (2)

where F−1 denotes the inverse Fourier transformation, and
kxz is the kernel correlation of x and z.

In the case of multiple channels, the linear kernel correlation
can be calculated as

kxz = F−1(
∑
c

(Fxc)
∗ � (Fzc) (3)

where c denotes the cth channel and ∗ is the complex-
conjugate transformation.

B. Dimensionality Reduction for Tracking

Shallow layers in CNN commonly describe the texture or
edge features of the image, whereas deep layers contain rich
semantic features. Deep layers perform better than shallow
layers in visual tracking, because the feature maps in deep
layers are invariant when the target changes. However, deep
layers have more channels than shallow layers. For example,
in the commonly used VGG16 network, there are 256 channels
in layer Conv4-3 and 512 channels in layer Conv5-3. Hence,
the outputs of the layers are 256 and 512 feature maps,
respectively. Tracking methods need to calculate the similarity
of each feature map. The time consumed is nearly linearly
proportional to the number of feature maps. Thus, it is ineffi-
cient to track the target with these layers. A common solution

is dimensionality reduction, for which principal component
analysis (PCA) is the most widely used method. PCA can
reduce the duplicate information between feature maps and
improve the efficiency of tracking, but it cannot reduce the
effect of other objects on the target. The last layer is closely
related with tracking, and selecting information related with
the tracked target in the last layer facilities the selection of fa-
vorable information for tracking in the front layers. Only good
target representations should be reconstructed. Hence, we aim
to select favorable feature maps and reduce the dimensionality
simultaneously. Furthermore, selecting favorable feature maps
of the last layer is useful for channel selection and weight
reconstruction of the previous layers.

For visual tracking, most feature maps have a small amount
of information because the deep layers represent the semantic
features of objects but few objects appear. These feature maps
should be dropped, as they are likely to be noise. Matrix norms
can be used to express the information amounts of feature
maps, such as `0, `1, and `2 [52]. In the case of a large
number of experiments, we choose the `2 norm to express
information amounts, because it is the smoothest and most
robust candidate:

In(xc) = ||xc||22 (4)

where xc denotes the feature map of channel c.
Some feature maps with a large amount of information are

unfavorable for tracking. There are two typical cases. First, the
background shows larger feature values, whereas the feature
values of the target are very small. Second, the background
and the target have similar feature values. Hence, we evaluate
each feature map independently and construct the following
tracking error to represent the discriminant ability with the
KCF:

E(xc) = ||F−1(
FyF(kxo

cx
b
c)

F(kxo
cx

o
c) + λ

)||22 (5)

where xo
c and xb

c are the target features and background
features in xc, respectively.

2019/3/17 5

Equation (5) represents training of a ridge regression with
the target feature and detection of the target in the background.
The smaller information amounts of the detection response
lead to better ability of discriminating the target from the
background. This metric is sensitive to noise. Hence, we gather
the information amounts and tracking error together with
PCA. Let α denote the channel selection parameter, where
αc ∈ {0, 1} and αc = 0 implied that channel c is dropped. It
can be concluded that the proposed dimensionality reduction
minimizes the following loss:

L(α)=LPCA(x diag(α))+
∑
c

(1−αc)In(xc)+αcE(xc) (6)

where LPCA(x) = ||x− xDDT ||22 is the PCA loss and D is
the PCA projection matrix. It is noted that only feature maps
with αc = 1 need to be transformed with PCA, because the
values in the cthcolumn in x diag(α) are zeros if αc = 0.

For the task of reducing M feature maps to d feature maps,
we solve Equation (6) in two steps. First, d′ best feature maps
are selected considering the information amounts and tracking
error. Then, the selected d′ feature maps are further reduced
to d feature maps with PCA. d′ is determined as the value
with the least loss among several reasonable candidates.

C. Channel Selection for Tracking
Convolutional neural networks have two special character-

istics. One characteristic is location invariance. The target is
located at the same positions of feature maps from different
convolution layers, for which pre-trained CNNs can be directly
used for tracking. The other characteristic is that deeper
layers have wider receptive fields than shallower layers. The
features in deep layers are the local information aggregation
of features in shallow layers. Accordingly, we propose that
selecting favorable information for tracking in shallow layers
enables us to obtain that in deep layers. Channel selection can
select favorable channels and improve the efficiency of feature
extraction. It will not affect the target locating process if the
target information is preserved.

We first propose the channel selection method for a single
layer and then generalize it to cases of multiple layers.

In deep compression, the objective is to maintain the output
after channel selection. For visual tracking, we aim to mini-
mize the information loss of the target and the output of the
background.

Considering a single convolutional layer, the c ×W × H
input tensor X is applied with n× c× kh × kw convolutional
filters W to generate an n×W×H output tensor Y, where W
and H are the sizes of feature maps, c and n are the numbers
of input channels and output channels, and kh and kw are
the sizes of the convolutional filters, respectively. To realize
convolution in the form of matrix multiplication, we consider
extracting a sample at every pixel from each input feature map,
to get c×W ×H individual samples of size kh × kw. Then,
these samples and filters are reshaped as column vectors. Let
N =W ×H and k = kh×kw; the convolution operation can
be represented as

Y =

c∑
i=1

Wi
TXi + b1T (7)

where Y is an n×N matrix representing the n output feature
maps, Xi is a k × N matrix denoting the samples from the
ith input feature map, and Wi is a k × n matrix expressing
n convolutional filters corresponding to the ith input channel.
Further, b is an n× 1 column vector representing the bias for
each output channel and 1 is an N × 1 column vector whose
values are all 1.

Then, the features in the target and background can be
separated easily owing to the CNN characteristic of weight
sharing:

Yp =

c∑
i=1

Wi
TXp

i + b1Tp , p ∈ {O,B} (8)

where Xp and Yp with p = O denote the input and output
values in the target region of the original feature maps X and
Y, respectively, while p = B denotes the background.

Let β = [β1, β2, ..., βc]
T be the channel selection parameter;

the channels with βi = 0 will be pruned and those with βi 6=
0 will be retained. To prune the channels from c to c′, the
channel pruning method for visual tracking can be formulated
as minimization of the following loss function:

Ls(β, c
′|X,Y,W) =

∣∣∣∣∣
∣∣∣∣∣YO−

c∑
i=1

βiWi
TXO

i − b1TO

∣∣∣∣∣
∣∣∣∣∣
2

F

+λB

∣∣∣∣∣
∣∣∣∣∣
c∑
i=1

βiWi
TXB

i + b1TB

∣∣∣∣∣
∣∣∣∣∣
2

F

s.t. ||β||0 ≤ c′

(9)

where || · ||F denotes the Frobenius norm, and λB is a
parameter for achieving a tradeoff between the information
loss of the target and the output of the background.

For simplicity, we reshape YO − b1TO as a row vector A,
Wi

TXO
i as a row vector Ci, and Wi

TXB
i as a row vector

Di. Further, for i = 1, ..., c, Ci and Di can be merged as
matrixes C and D, respectively. b1TB is reshaped as a row
vector B. Then, Equation (9) can be simplified as

min
β

∣∣∣∣A− βTC∣∣∣∣2
F
+ λB

∣∣∣∣βTD+B
∣∣∣∣2
F

s.t. ||β||0 ≤ c′
(10)

Equation (10) is classified as an `0 minimization problem
that is NP-hard. Hence, we solve the approximate `1 mini-
mization problem instead.

min
β

1

2

∣∣∣∣A−βTC∣∣∣∣2
F
+
λB
2

∣∣∣∣βTD+B
∣∣∣∣2
F
+λβ

∣∣∣∣β∣∣∣∣
1

(11)

Then, we introduce a dual variable θ, replace β with θ in
the `1 item, and constrain θ = β. Equation (11) can be solved
with the augmented Lagrangian [56],

L(β, θ) =
1

2

∣∣∣∣A− βTC∣∣∣∣2
F
+
λB
2

∣∣∣∣βTD+B
∣∣∣∣2
F
+

λβ
∣∣∣∣θ∣∣∣∣

1
+ (β − θ)TS +

µ

2

∣∣∣∣β − θ∣∣∣∣2
2

(12)

where S is the Lagrange multiplier and µ is the Lagrange
parameter. The augmented Lagrangian can be iteratively opti-
mized in three steps.

2019/3/17 6

Step 1: Update β:

β = argmin
β

1

2

∣∣∣∣A−βTC∣∣∣∣2
F
+
λB
2

∣∣∣∣βTD+B
∣∣∣∣2
F
+

βTS +
µ

2

∣∣∣∣β − θ∣∣∣∣2
2

(13)

A closed-form solution is obtained by letting the derivatives
be zero:

β=(CCT+λBDDT+µ)−1(CAT−λBDBT−S+µθ) (14)

Step 2: Update θ:

θ = argmin
θ

λβ
∣∣∣∣θ∣∣∣∣

1
− θTS +

µ

2

∣∣∣∣β − θ∣∣∣∣2
2

= argmin
θ

λβ
µ

∣∣∣∣θ∣∣∣∣
1
+

1

2

∣∣∣∣θ − β − 1

µ
S
∣∣∣∣2
2

(15)

There is an analytic solution

θ = δ(
λβ
µ
, β +

1

µ
S) (16)

where δ(ε, x) = sign(x)max(0, |x| − ε) and δ denotes the
shrinkage operator. As λβ increases, ||θ||0 decreases. There-
fore, we can tune λβ with a fixed number of selected channels
c′ in each iteration, or fix λβ to achieve an adaptive c′.

Step 3: Update Multiplier S: The Lagrange multipliers are
updated as

Si+1 = Si + µi(β − θ) (17)

where i is the number of iterations and µi+1 =
min(µmax, ρµ

i). µmax is the predefined maximum value of
µ, and ρ > 1.

We define the iteration process to converge when the dif-
ference of the loss in Equation (12) between two successive
iterations is extremely small. As the iteration proceeds, |β|0
will decrease. With the obtained β after convergence, the
channels for which βc 6= 0 are selected, and the others are
pruned. As the learned β does not consist of ones and zeros,
the parameter of the remaining filters should be tuned. This
will be discussed in next subsection.

D. One-sample Weight Reconstruction

As mentioned above, we retain the weights of the remaining
connections after pruning, but the learned β does not consist
of ones and zeros. It is necessary to learn new weights to
preserve the output of each layer. Let c′l denote the remaining
number of channels after pruning for convolutional layer l,
which means that there are c′l values in βl that are not zero.
W consists of c′l × c′l+1 filters, with k parameters each. Each
input sample can supply N equations for W.

A simple method is to apply the weights of β to W. The
filters in each channel get the same weight. However, this
method has a large reconstruction error, and the output error
will be accumulated in deep layers in the network. Therefore,
we propose the one-sample weight reconstruction method.

We believe that each pre-trained filter reflects a useful
feature and the structure of each filter is significant. Hence, we
learn a weight for each filter. Thus, the filters are weighted with
their structures preserved. c′l × c′l+1 parameters γ are learned

to reconstruct the output with the remaining channels. The
weight reconstruction is processed forward layer by layer. For
each layer, the problem loss function can be formulated as

Lr(γ|X,Y,W)=

c′l+1∑
j=1

∣∣∣∣∣
∣∣∣∣∣Y′Oj −

c′l∑
i=1

γijWij
TXO

i

∣∣∣∣∣
∣∣∣∣∣
2

2

(18)

where Y′j is from the feature maps of the original model in
order to reduce the accumulated error in the entire pruning
process.

Then, the problem can be rearranged as c′l+1 independent
least-squares problems:

min
γj

∣∣∣∣∣
∣∣∣∣∣Y′Oj − γTj YO

j

∣∣∣∣∣
∣∣∣∣∣
2

2

(19)

where each row of YO
j is YO

ij = Wij
TXO

i for each i, and it
is from the feature maps of pruned model.

To avoid over-fitting the single sample, an `2 regularization
included in Equation (19). γ can be obtained by

γj = (YO
j (Y

O
j)

T + λW)−1(YO
j (Y

′O
j)

T) (20)

where λW is the regularization parameter.

E. Whole Model Pruning and Tracking

To prune multiple convolutional layers, we apply the above-
mentioned single layer channel selection method layer by
layer. The process is conducted backward, because only the
channels remaining after pruning in the next layer should be
considered when we prune the channels in the current layer.
Considering a CNN with n convolutional layers, after the
dimensionality reduction method reduces the dimensionality
of layer n from cn to c′n, the channel selection process can be
formulated as follows: minβl Ls(β

l, c′l|Fl,Fl+1
s ,Wl+1

s)
Fls = PruneF (F

l, βl)
Wl

s = PruneW (Wl, βl)
l = n− 1, ..., 1 (21)

where Ls is the loss function in Equation (9), c′l is the
expected remaining number of channels of layer l, and βl is
the corresponding optimization parameter. Fl and Wl are the
original feature maps and filter weights of layer l, respectively.
PruneF and PruneW are the pruning operations that prune
the channels with βli = 0 for the feature maps and filter
weights, respectively. Fls and Wl

s are the remaining feature
maps and filter weights after pruning layer l, respectively. For
pruning each layer, we minimize the target information loss
and the background information in the feature maps of the next
layer. The procedure is conducted backward; thus, favorable
information for tracking the target can be selected gradually. If
we prune the channels forward, more unfavorable information
would disturb the tracking process.

After pruning all the layers, we reconstruct the filter weights
for the compressed network. The process can be formulated
as follows: minγl Lr(γ

l|Fl−1N ,Fls,W
l
s)

Wl
N =Weight(Wl

s, γ
l)

FlN = Conv(Fl−1N ,Wl
N)

l = 1, ..., n− 1 (22)

2019/3/17 7

where Lr is the loss function in Equation (18), FlN denotes the
feature maps generated by layer l of the compressed network,
and F0

N = F0 is the input image. Wl
N are the reconstructed

filter weights. Weight is the weighting operation whereby
each small filter in Wl

s is weighted by the corresponding
γl. Conv is the convolution operation. This procedure is
conducted forward. It is noted that Fls is from the original
network; hence, the forward weight reconstruction can com-
pensate the error in shallow layers with information in deep
layers, and the accumulated error can be accounted for.

In visual tracking, for each video image sequence, the
initial target position and scale are labeled. A sample X0

that includes the target and its background can be obtained.
We prune channels of a pre-trained CNN model M with the
sample. The channel pruning is conducted in the first frame
for each video. The pruned model is fixed in the next tracking
process. The target is determined in the first frame, and we
can prune the CNN model to be suitable for this target.

The feature maps in each layer of M can be calculated with
the sample X0. Then, we carry out dimensionality reduction,
channel selection, and weight reconstruction in order. After
obtaining the pruned CNN model, we can extract new good
features to train the KCF model. When a new frame arrives,
the features are extracted with the pruned CNN model and the
position of the target can be predicted by the KCF model. The
scale of the target is estimated with the method proposed in
[27], and the KCF model is updated. The tracking algorithm
with channel pruning is summarized in Algorithm 1.

Algorithm 1 CPT: Channel Pruning for Tracking algorithm
Require:

The original CNN model M with n convolutional layers,
the first input sample X0, and a new arrived sample Xt

Ensure:
The pruned CNN model M′, and target prediction xtargett ;

1: if t = 0 then
2: Execute M with input sample X0, and obtain the

feature maps in each layer;
3: Set current layer l = n;
4: Learn α and PCA parameters with Equation (6);
5: repeat
6: Select channels in layer l by iteratively solving β, θ,

S with Equation (14), (16), (17); l = l − 1.
7: until l = 0
8: repeat
9: Learn γ to reconstruct filter weights in layer l with

Equation (20); l = l + 1.
10: until l = n
11: Preserve the pruned model M′, and generate new

features to train a KCF model.
12: end if
13: Extract features z with M′ for Xt;
14: Generate target response y with KCF in Equation (2);
15: xtargett is located where y is the maximum.
16: Predict the scale of xtargett , and update the KCF model.
17: return M′, xtargett .

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the proposed tracking with channel pruning
method, we first detail the implementation. Then, we ana-
lyze the effectiveness and sensitivity of different components.
Finally, the proposed method is compared with state-of-the-
art methods and the results are analyzed. Our algorithm is
implemented in MATLAB and runs in both CPU and GPU
environments. The CPU environment is Intel Core i7 (3.6
GHz) with 16 GB RAM. The GPU environment is GTX
1080ti.

A. Experimental Setup

CNN Network: We employ the most commonly used
network, VGG16, as an example. VGG16 has 13 convolutional
layers. The 7th convolutional layer (Conv3-3), 10th convolu-
tional layer (Conv4-3), and 13th convolutional layer (Conv5-
3) are commonly and directly used for tracking. Here, we
use Conv4-3 as the last layer, which outputs feature maps for
tracking. Conv4-3 has 512 channels, and the output feature
maps are reduced to 64 channels for tracking with PCA if the
pruned networks output more than 64 channels.

Tracking Implementation: To evaluate the effectiveness
of different components of our method, we use the simple the
kernelized correlation filter (KCF) tracker with a linear kernel
without scale adaptation. The sample region size is 9 times
the target area. The regularization parameter λ = 0.0001, and
the model update rate is 0.1. For state-of-the-art comparison,
we run SAMF [27], which is an improved version of KCF
with seven scales. Here, we define the scales as 1.01s, s ∈
{−3,−2,−1, 0, 1, 2, 3}.

Datasets and Evaluation Metrics: OTB [1] is one of
the most popular visual tracking benchmarks; it includes 100
videos with numerous comparisons of various state-of-the-art
trackers. There are two metrics for accuracy: distance precision
(DP) and overlap precision (OP). To evaluate DP, the distance
between the predicted target position and the true position is
calculated, and a frame is judged to be successfully tracked
if the distance is less than a threshold of 20 pixels. DP is the
success rate of all frames from all videos. To evaluate OP, the
overlap rate between the predicted target region and the true
target region is calculated. A success rate curve can be plotted
with different thresholds. The area under the curve (AUC) is
used to represent OP. To evaluate the efficiency, frames per
second (FPS) is used to evaluate the tracker and floating-point
operations per second (FLOPs) is used to evaluate the CNN
network. The number of parameters of the networks is also
concerned.

B. Component Evaluation

Our channel pruning method consists of dimensionality
reduction, channel selection, and weight reconstruction.

Dimensionality reduction is conducted in the last layer
of CNN networks. Here, we reduce Conv4-3 of VGG16
and keep the previous layers unchanged. Our dimensionality
reduction method is compared with the original PCA method,
and the tracking results are shown in Figure 3. DP-PCA

2019/3/17 8

and OP-PCA denote the tracking performance with PCA
dimensionality reduction in terms of DP and OP, respectively.
Without any dimensionality reduction, the original 512 feature
maps produce a DP of 0.781 and an OP of 0.539. The best
dimensionality with PCA is 128, where DP is 0.789 and OP
is 0.548. DP-CP and OP-CP represent the performance of
the proposed dimensionality reduction method. Our method
achieves a maximum DP of 0.793 with a dimensionality of
128 and a maximum OP of 0.550 with a dimensionality 64.
Our method can reduce the last layer to fewer dimensionalities
with better precision compared to PCA.

0 100 200 300 400 500 600

Dimensionality

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P
re

ci
si

o
n

DP-CP

OP-CP

DP-PCA

OP-PCA

Fig. 3. Performance on OTB100 of KCF with different dimensionality
reduction methods.

The proposed dimensionality reduction method involves
information amounts, tracking error, and different values of
the selected dimensionality d′. The tracking results of different
configurations are listed in Table I. In addition to d′, the
effects of different information amount metrics, such as `0,
`1, and `2, are shown. Our method has the best performance
when d′ = 64. Thus, the proposed selection method based on
information amounts and tracking error is effective. `2 is the
best representation for the information amounts.

TABLE I
TRACKING RESULTS OF DIFFERENT DIMENSIONALITY REDUCTION

CONFIGURATIONS IN OTB100.

Configuration d’ OP DP
`2 512 0.537 0.774
`2 256 0.547 0.785
`2 128 0.547 0.787
`2 64 0.55 0.791
`2 32 0.531 0.764
`1 64 0.546 0.788
`0 64 0.543 0.784

without tracking error 64 0.540 0.779

We then evaluate the single layer pruning method with
the fixed dimensionality reduction method. As discussed in
the previous section, the pruning ratio can be adaptive with
fixed λβ . The comparisons with different λβ for different
convolutional layers are shown in Figure 4. It can be seen
that the pruning ratio increases with λβ . Deep layers are
easier to compress than shallow layers. This is consistent
with the fact that most feature maps of deep layers have
little information about the target. It is noted that a fixed λβ
contributes to different pruning ratios for different layers and
different targets. Fixed λβ is adaptive to different layers, but

it is not robust for different videos. Hence, we employ a fixed
pruning ratio. A small λβ is pre-set and gradually increased
until the converged selection results reach the fixed pruning
ratio.

0 0.5 1 1.5 2 2.5 3 3.5 4

log
4
(100)

0

0.2

0.4

0.6

0.8

1

P
ru

n
in

g
 R

at
io

Conv1-1

Conv1-2

Conv2-1

Conv2-2

Conv3-1

Conv3-2

Conv3-3

Conv4-1

Conv4-2

Fig. 4. Pruning ratio with different λβ for different convolutional layers.

Pruning different layers will have different effects on the
tracking results. Compression is effective in classification
problems because large amounts of samples are trained so that
the classifier is robust against different object states. However,
tracking is sensitive to minor changes. Once the tracker fails
in a frame, it would probably fail in the following tracking
process. Figure 5 shows tracking results with different pruning
rates for different single convolutional layers in 10 represen-
tative videos. In the 10 videos, the targets change quickly
and with few scale variations. The robustness of features is
significant in these videos. To prove the effectiveness of the
proposed pruning method, two simple selection strategies are
compared. One is the order first method named firstK, which
selects the first k channels and prunes the left channels. The
other is the max response method named maxK, which selects
channels that have a high absolute sum. CPr denotes the
proposed pruning method with weight reconstruction, whereas
CP represents the version without weight reconstruction.

From Figure 5, channel pruning will not degrade the
performance severely and it even has a positive effect in
some cases. There is considerable scope for compression in
pre-trained CNN networks for visual tracking problems. In
general, the firstK method shows the worst performance.
It is significant to select favorable channels. Our methods
have stable performance in different layers with different
pruning ratios. The maxK method and the firstK method
are unstable and show worse performance than our methods
in most cases.

In shallow layers, pruning channels will degrade the per-
formance because shallow layers have fewer channels than
deep layers and the error may be magnified in the forward-
propagation process. The CP method sometimes performs
worse than the maxK method. Because we prune the infor-
mation that can be reconstructed, such information may be lost
without weight reconstruction. It can be seen that our method
with weight reconstruction (CPr) always performs the best in
shallow layers. Information loss will increase as the network
becomes deep without weight reconstruction. Hence, weight
reconstruction is necessary in shallow layers. Pruning channels

2019/3/17 9

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv1-1

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv1-2

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv2-1

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv2-2

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv3-1

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv3-2

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv3-3

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv4-1

CPr

CP

maxK

firstK

0 0.2 0.4 0.6 0.8

Pruning Ratio

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

o
n

Conv4-2

CPr

CP

maxK

firstK

Fig. 5. Tracking results using OP plots with different pruning rates for different single convolutional layers in 10 representative videos. The first frames of
the 10 videos are shown at the bottom.

in shallow layers depends on the weight reconstruction. It is
not easy to ensure that the pruned information is reconstructed
well and is suitable for any case with only one sample. It is
suggested that a few channels in shallow layers be pruned.

In deep layers, our methods have some advantages. Our
method without weight reconstruction (CP) performs better
than the one with weight reconstruction (CPr). There are
many channels in deep layers, most of which have little
information. Hence, more noise can be pruned in deep layers
when the pruning ratio is not too large. Accordingly, we can
prune more channels in deep layers, especially channels with
little information.

To verify the ability of strengthening the target with the
proposed compression method, we use the information ratio
of the target to the local image patch to represent the dis-
criminative ability of features. Figure 6 shows plots of the
real-time target information ratio for different videos. RGB
denotes the original image patch, and CNN represents the
features from pre-trained CNN with PCA. CPd denotes the
proposed method with dimensionality reduction only. CP
improves CPd with channel selection, and CPr improves
CP with weight reconstruction. Dog is a video where the

background has a color similar to that of the target, but is
stable and the target has deformation. CarDark is a video
where the background is similar to the target and highly
unstable. Our method increases the average target information
ratio by around two times compared to the original pre-trained
CNN. Figure 6 shows that our method can improve the target
representation ability and is resistant to target deformation and
background clutter. We can see that the target information
ratio is improved considerably in the first several frames.
This is because our method is trained with the first frame.
Although the advantage will reduce with time, our method
still outperforms the original pre-trained CNN after long-time
tracking, and the proposed weight reconstruction method can
improve the stability significantly.

The Alexnet is also tested to confirm the effectiveness
of proposed method. Alexnet has five convolutional layers.
The fifth convolutional layer is the last convolutional layer
for dimensionality reduction, and the first and third layers
are common. However, the convolutional operations in the
second and fourth convolutional layers are calculated with
two parts. In such cases, the two parts are thought as two
inputs of a same convolutional layer, and their pruning losses

2019/3/17 10

0 20 40 60 80 100 120 140

Frame

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ar

g
et

 I
n
fo

rm
at

io
n
 R

at
io

Dog

CPr [0.478]

CP [0.452]

CPd [0.440]

CNN [0.234]

RGB [0.110]

0 50 100 150 200 250 300 350 400

Frame

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
ar

g
et

 I
n
fo

rm
at

io
n
 R

at
io

CarDark

CPr [0.296]

CP [0.271]

CPd [0.247]

CNN [0.133]

RGB [0.135]

Fig. 6. Plots of target information ratio for the frames of the videos Dog
and CarDark. The legend states the mean information ratio of all frames.

are simply added up. Figure 7 presents the tracking results
of Alexnet. “alexnet” indicates the tracking results with the
original Alexnet. “CPT alexnet” indicates optimized Alexnet
with proposed dimensionality reduction, and “CPT alexnet1”
indicates optimized Alexnet with proposed pruning methods.
Figure 7 shows the proposed method can optimize the structure
of Alexnet, and generate better features for tracking.

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

cc
es

s
ra

te

Success plots of OPE

CPT_alexnet1 [0.521]

CPT_alexnet [0.488]

alexnet [0.474]

Fig. 7. Tracking results with the Alexnet in ten videos mentioned in Fig. 5.

The efficiency of our method is evaluated. In tracking, the
initial time for each sequence is not considered by track-
ing speed. Because the initial operation is conducted once,
whereas the tracking frames would be hundreds or thousands.
Here, the average time cost by network compression is about
one minute for GPU. Table II compares different pruning
configurations in terms of several metrics. The configurations
are the pruning ratio for different layers. ”0.75/Conv4-3” im-
plies that the layer Conv4-3 is pruned by 75%, and ”0.25/all”
means that all layers are pruned by 25%. ”Base” denotes

the original network without any pruning. The FLOPs and
Params columns indicate the percentage of remaining CNN
FLOPs and parameters, respectively. The feature and tracking
columns indicate the speed of feature extraction and tracking
in terms of FPS in both CPU and GPU environments. It is
noted that only the CNN processing is conducted in GPU,
whereas other parts of tracking are conducted in CPU. Pruning
deep layers can reduce additional parameters, because there
are more channels in deep layers. The reduced FLOPs are
similar for different layers, because the FLOPs are influenced
by the size of feature maps, and feature maps in shallow
layers have a larger size. As the pruning ratio of all layers
increases, the numbers of FLOPs and parameters decrease
rapidly. The CPU speed can be improved significantly with
channel pruning, because the feature extraction requires too
much time. In the GPU environment, the improvement has
a bottleneck. In addition to processing the image with the
CNN, feature extraction in tracking also involves reshaping
the image patch, interpolation, regularization, and some other
calculations. Pruning channels can lead to a speedup of 7 times
or more in CPU and 2 times in GPU for visual tracking.

TABLE II
EFFICIENCY COMPARISONS OF DIFFERENT PRUNING CONFIGURATIONS.

Configuration FLOPs Params Feature(FPS) Tracking(FPS)
Ratio/Layer Ratio Ratio (CPU/GPU) (CPU/GPU)

Base 1 1 5.08/74 2.3/25
0.5/Conv4-3 0.934 0.846 5.29/102 2.59/29

0.75/Conv4-3 0.901 0.768 5.34/144 2.74/34
0.875/Conv4-3 0.884 0.73 5.61/112 2.84/40
0.5/Conv4-2 0.81 0.556 5.89/199 3.01/50
0.5/Conv4-1 0.785 0.498 5.89/183 3.04/48
0.5/Conv3-3 0.785 0.614 5.98/170 3.05/48
0.5/Conv3-2 0.752 0.652 6/158 3.1/46
0.5/Conv3-1 0.785 0.672 5.8/129 3.12/45
0.5/Conv2-2 0.785 0.7 5.96/153 2.98/45
0.5/Conv2-1 0.785 0.715 5.91/170 3.07/45
0.5/Conv1-2 0.785 0.722 6.13/162 3.18/49
0.5/Conv1-1 0.815 0.727 6.29/140 3.11/38

0.25/all 0.502 0.418 7.97/194 4.17/48
0.5/all 0.227 0.192 14.06/183 7.02/52

0.75/all 0.06 0.053 32.86/186 15.2/52

C. Comparison With State-of-the-Art Methods
The proposed visual tracking method with channel pruning,

called CNNcompress, is compared with nine state-of-the-art
trackers, namely DeepSRDCF [57], HCF [14], CNNSVM
[33], CSRDCF [32], SRDCF [30], LCT [58], SAMF [27],
DSST [28], and Struck [25]. For state-of-the-art performance,
we prune several deep layers of VGG16 and keep the shallow
layers unchanged. Unlike common deep compression methods
that focus on compressing the shallow layers for classification
problems, we solve the visual tracking problem where the
performance is sensitive to feature variations and information
loss. With only one sample, pruning all layers can lead to
good performance in most videos but not in difficult videos.
As discussed above, pruning the last several layers in pre-
trained CNN can lead to sufficient improvement in terms of
both efficiency and precision. Specifically, the Conv4-3 layer
is reduced to 64 dimensions, the Conv4-2 and Conv4-1 layers
are pruned by 25%, and the Conv4-1 layer undergoes weight
reconstruction.

We report the overall performance for one-pass evaluation
(OPE) in all 100 videos, as shown in Figure 8. Our method

2019/3/17 11

yields the best DP score of 0.855 and the second best OP
score of 0.617. The DP score represents location precision
whereas the OP score takes scale estimation into account. We
also test SAMF with CNN features and obtain a DP score
of 0.815 and an OP score of 0.567. With channel pruning,
we obtain better features compared to the original CNN.
Therefore, our tracker locates the target precisely. Specifically,
we achieve an improvement of 4% in terms of DP and
5% in terms of OP. However, we only use a single layer
Conv4-3 whose resolution is low to track, and it results in
inaccurate scale estimation. Nevertheless, we still achieve a
state-of-the-art overlap success rate. This indicates the power
of good features in our methods. DeepSRDCF, HCF, and
CNNSVM are based on pre-trained CNNs, and the others
are based on hand-crafted ones. CNN-based methods have
better location precision than hand-crafted ones because CNN
features have better target semantics and are robust against
target deformation. The hand-crafted features have advantages
in scale estimation, because they usually have high-resolution
representations. DeepSRDCF uses multiple CNN layers and
hand-crafted features simultaneously; hence, it has good scale
estimation and good location precision. Among the trackers,
DeepSRDCF, HCF, LCT, SAMF, and DSST all use improved
KCF methods. Our method is based on the SAMF method,
and we achieve promising performance with good features
generated by the pruned CNN.

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE

CNNcompress [0.855]

DeepSRDCF [0.851]

HCF [0.837]

CNNSVM [0.814]

CSRDCF [0.804]

SRDCF [0.789]

LCT [0.762]

SAMF [0.758]

DSST [0.695]

Struck [0.639]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

ra
te

Success plots of OPE

DeepSRDCF [0.635]

CNNcompress [0.617]

SRDCF [0.598]

CSRDCF [0.584]

HCF [0.562]

LCT [0.562]

SAMF [0.556]

CNNSVM [0.554]

DSST [0.475]

Struck [0.462]

Fig. 8. Distance precision and overlap success plots of OPE in OTB100. The
legends show the average DP scores at a location error threshold of 20 and
the OP AUC scores.

The 100 videos in OTB100 are annotated with 11 attributes.
The attributes represent the challenges appearing in the labeled
videos, and each video is labeled with several challenges, such
as illumination variation (IV), scale variation (SV), occlusion

(OCC), deformation (DEF), motion blur (MB), low resolution
(LR), fast motion (FM), out of view (OV), background clutter
(BC), in-plane rotation (IPR), and out-of-plane rotation (OPR).
The tracking results of the 11 challenges are shown in Figure 9.
Our tracker performs the best under seven challenges, namely
scale variation, deformation, motion blur, low resolution, fast
motion, illumination variation, and out-of-plane rotation. Deep
CNN features are invariant when the target changes; thus,
the CNN-based trackers DeepSRDCF, HCF, CNNSVM, and
our CNNcompress have good locating ability. However, KCF-
based methods will result in decay of the features. The feature
values away from the center of the image patch will decrease.
The tracker will fail if the target deviates from the center
of the image patch. Our method prunes channels with little
target information. This can reduce the feature values in
backgrounds. The target feature values are relatively increased.
Hence, the target is highlighted and is easy to track in fast
motion and low resolution cases. The feature invariance of
deep CNN layers has a side effect in visual tracking because
the target is a special instance of a category. The discriminative
power against similar objects of the same category is poor.
With channel pruning, only the target information in the first
frame is preserved, and the feature invariance for objects of
the same category is reduced. The pruned network may not
recognize the target after drastic change, but updating the
KCF tracker can compensate the loss. Structurally optimizing
the networks makes our tracker find the target easily, and
the center positions of different target postures are judged
precisely. In the occlusion and out-of-view cases, DeepSRDCF
performs better because a large search area is used. HCF
performs the best in the background clutter environment. HCF
uses three CNN layers and trains three KCF trackers to achieve
fine segmentation. Overall, the results demonstrate that chan-
nel pruning can improve the representative and discriminative
ability for a specific target.

To further analyze the effectiveness of channel pruning
for visual tracking, we compare the four CNN-based track-
ers in 10 challenging sequence. The tracking results of the
trackers are shown in Fig. 10. In Basketball, Bolt2, and
Freeman1, all trackers can find the target correctly. However,
our tracker gives the most precise prediction. In Biker, fast
motion and deformation occur at the same time; our tracker
and DeepSRDCF still track the target successfully. In Box
and Lemming, occlusion occurs several times; nevertheless,
our CNNcompress always shows good tracking performance.
DeepSRDCF has a large search region; hence, it can rediscover
the target after a short failure interval. In Human9 and
Walking2, DeepSRDCF drifts to the background and similar
objects, respectively. Our tracker has a lower probability of
drifting. In Ironman, our tracker fails to track the target
because the background is similar to the target and both
the target and the background change quickly. In Singer2,
DeepSRDCF, HCF, and CNNSVM cannot follow the target.
In this case, the features generated from the CNN in the target
are smaller than those in the background, and the trackers drift
to the background in the first several frames. Owing to the
proposed channel pruning method, the pruned networks can
generate discriminative features and our tracker follows the

2019/3/17 12

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - scale variation (64)

CNNcompress [0.826]

DeepSRDCF [0.819]

HCF [0.799]

CNNSVM [0.787]

SRDCF [0.745]

CSRDCF [0.735]

SAMF [0.716]

LCT [0.681]

DSST [0.662]

Struck [0.598]

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

o
n

Precision plots of OPE - occlusion (49)

DeepSRDCF [0.825]

CNNcompress [0.811]

HCF [0.767]

SRDCF [0.735]

CNNSVM [0.730]

SAMF [0.727]

CSRDCF [0.723]

LCT [0.682]

DSST [0.615]

Struck [0.533]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - deformation (44)

CNNcompress [0.834]

CNNSVM [0.793]

HCF [0.791]

DeepSRDCF [0.783]

CSRDCF [0.781]

SRDCF [0.734]

LCT [0.689]

SAMF [0.677]

DSST [0.568]

Struck [0.527]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - motion blur (29)

CNNcompress [0.829]

DeepSRDCF [0.823]

HCF [0.804]

SRDCF [0.767]

CSRDCF [0.756]

CNNSVM [0.751]

LCT [0.669]

SAMF [0.667]

DSST [0.611]

Struck [0.588]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - low resolution (9)

CNNcompress [0.900]

HCF [0.831]

CNNSVM [0.811]

DeepSRDCF [0.708]

SAMF [0.684]

CSRDCF [0.683]

Struck [0.671]

SRDCF [0.655]

DSST [0.617]

LCT [0.537]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - fast motion (39)

CNNcompress [0.827]

HCF [0.815]

DeepSRDCF [0.814]

SRDCF [0.769]

CSRDCF [0.753]

CNNSVM [0.747]

SAMF [0.689]

LCT [0.681]

Struck [0.621]

DSST [0.584]

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

o
n

Precision plots of OPE - out of view (14)

DeepSRDCF [0.781]

CNNcompress [0.769]

CSRDCF [0.691]

HCF [0.677]

SAMF [0.677]

CNNSVM [0.650]

SRDCF [0.597]

LCT [0.592]

Struck [0.491]

DSST [0.487]

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

o
n

Precision plots of OPE - background clutter (31)

HCF [0.843]

DeepSRDCF [0.841]

CNNcompress [0.832]

CSRDCF [0.792]

CNNSVM [0.776]

SRDCF [0.775]

LCT [0.734]

DSST [0.702]

SAMF [0.701]

Struck [0.561]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - illumination variation (38)

CNNcompress [0.860]

HCF [0.817]

CNNSVM [0.795]

SRDCF [0.792]

DeepSRDCF [0.791]

CSRDCF [0.778]

LCT [0.746]

SAMF [0.730]

DSST [0.723]

Struck [0.549]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - in-plane rotation (51)

HCF [0.854]

CNNcompress [0.838]

DeepSRDCF [0.818]

CNNSVM [0.813]

LCT [0.782]

CSRDCF [0.779]

SRDCF [0.745]

SAMF [0.731]

DSST [0.724]

Struck [0.634]

0 10 20 30 40 50

Location error threshold

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Precision plots of OPE - out-of-plane rotation (63)

CNNcompress [0.849]

DeepSRDCF [0.835]

HCF [0.807]

CNNSVM [0.798]

CSRDCF [0.756]

LCT [0.746]

SRDCF [0.742]

SAMF [0.741]

DSST [0.670]

Struck [0.593]

Fig. 9. Distance precision plots of different challenges in OTB100.

target successfully. Our tracker is more robust than the other
three trackers. Common CNN-based trackers are weak in scale
estimation. This will result in the background information
being updated into the model, and the error is magnified with
time. However, with the proposed channel pruning method, the
background information around the target is low. Although our
tracker predicts a bigger bounding box than the actual target,
the extracted background features have small values and will
not affect the tracker.

V. CONCLUSION

In this paper, we presented a channel pruning method for
visual tracking. We aimed to apply pre-trained CNNs to a
visual tracking problem. A dimensionality reduction method,
backward channel selection method, and one-sample weight
reconstruction method were proposed to customize the channel
pruning method for visual tracking. We found that pruning
deep layers is easy and beneficial for tracking in most cases,

whereas pruning shallow layers is difficult with only one sam-
ple. Promising performance could be achieved with features
from one layer in a compressed CNN and a simple scale
strategy involving KCF implementation. By optimizing the
structure of pre-trained CNNs, we can improve the tracking
performance by 5% in terms of precision and achieve a speed-
up of 2 times for GPU and 7 times for CPU. In the future, we
will further explore multiple layer fusion in CNN and one-shot
learning in visual tracking.

REFERENCES

[1] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848, 2015.

[2] M. Kristan, J. Matas, and A. Leonardis, “The visual object tracking
vot2015 challenge results,” in IEEE Int. Conf. Comput. Vis. workshops,
2015, pp. 1–23.

[3] L. C. Zajc, A. Lukezic, A. Leonardis, and M. Kristan, “Beyond standard
benchmarks: Parameterizing performance evaluation in visual object
tracking,” in IEEE Int. Conf. Comput. Vis., 2017, pp. 3343–3351.

2019/3/17 13

Fig. 10. Tracking results of 4 CNN-based trackers in 10 challenging video sequences. The 10 videos are Basketball, Biker, Box, Human9, Bolt2,
Ironman, Lemming, Singer2, Freeman1, and Walking2, from top to bottom, and from left to right.

[4] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey, “Need
for speed: A benchmark for higher frame rate object tracking,” in IEEE
Int. Conf. Comput. Vis., 2017, pp. 1134–1143.

[5] S. Li and D. Yeung, “Visual object tracking for unmanned aerial
vehicles: A benchmark and new motion models,” in Proc. AAAI, 2017,
pp. 4140–4146.

[6] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for
uav tracking,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 445–461.

[7] P. Liang, E. Blasch, and H. Ling, “Encoding color information for visual
tracking: Algorithms and benchmark.” IEEE Trans. Image Process.,
vol. 24, no. 12, pp. 5630–5644, 2015.

[8] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for
robust visual tracking,” Int. J. Comput. Vis., vol. 77, no. 1, pp. 125–141,
2008.

[9] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online
multiple instance learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. IEEE, 2009, pp. 983–990.

[10] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583–596, 2015.

[11] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “Eco: Efficient
convolution operators for tracking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 6931–6939.

[12] N. Wang and D.-Y. Yeung, “Learning a deep compact image representa-
tion for visual tracking,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 809–817.

[13] H. Li, Y. Li, and F. Porikli, “Deeptrack: Learning discriminative feature
representations online for robust visual tracking,” IEEE Transactions on
Image Process., vol. 25, no. 4, pp. 1834–1848, 2016.

[14] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convo-
lutional features for visual tracking,” in IEEE Int. Conf. Comput. Vis.,
2015, pp. 3074–3082.

[15] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M. H. Yang,
“Hedged deep tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 4303–4311.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

[18] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. S. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5000–
5008.

[19] L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, and A. Vedaldi,
“Learning feed-forward one-shot learners,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 523–531.

[20] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in Proc. ICLR, 2016.

[21] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in IEEE Int. Conf. Comput. Vis., 2017.

[22] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless
tracking,” Int. J. Comput. Vis., vol. 111, no. 2, pp. 213–228, 2015.

[23] T. Zhang, S. Liu, N. Ahuja, M. H. Yang, and B. Ghanem, “Robust visual
tracking via consistent low-rank sparse learning,” Int. J. Comput. Vis.,
vol. 111, no. 2, pp. 171–190, 2015.

[24] T. Zhang, A. Bibi, and B. Ghanem, “In defense of sparse tracking:
Circulant sparse tracker,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 3880–3888.

[25] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks,
and P. H. Torr, “Struck: Structured output tracking with kernels,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10, pp. 2096–2109, 2016.

[26] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. IEEE, 2010, pp. 2544–2550.

[27] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with
feature integration,” in Proc. Eur. Conf. Comput. Vis., 2014.

[28] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, “Discriminative
scale space tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 8, pp. 1561–1575, 2017.

[29] S. Wang, D. Wang, and H. Lu, “Tracking with static and dynamic
structured correlation filters,” IEEE Trans. Circuits Syst. Video Techn.,
vol. 28, no. 10, pp. 2861–2869, 2018.

[30] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning
spatially regularized correlation filters for visual tracking,” in IEEE Int.
Conf. Comput. Vis., 2015.

[31] H. K. Galoogahi, A. Fagg, and S. Lucey, “Learning background-aware
correlation filters for visual tracking,” in IEEE Int. Conf. Comput. Vis.,
2017.

[32] A. Lukežič, T. Vojı́ř, L. Čehovin, J. Matas, and M. Kristan, “Discrim-
inative correlation filter with channel and spatial reliability,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017.

[33] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,” in Proc.
ICML, 2015.

[34] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond
correlation filters: Learning continuous convolution operators for visual
tracking,” in Proc. Eur. Conf. Comput. Vis., 2016.

[35] T. Zhang, C. Xu, and M.-H. Yang, “Multi-task correlation particle filter
for robust object tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017.

[36] M. Wang, Y. Liu, and Z. Huang, “Large margin object tracking with

2019/3/17 14

circulant feature maps,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017.

[37] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 FPS with
deep regression networks,” in Proc. Eur. Conf. Comput. Vis., 2016, pp.
749–765.

[38] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr,
“Fully-convolutional siamese networks for object tracking,” in Proc. Eur.
Conf. Comput. Vis. Workshops, 2016, pp. 850–865.

[39] K. Chen and W. Tao, “Once for all: A two-flow convolutional neural
network for visual tracking,” IEEE Trans. Circuits Syst. Video Techn.,
vol. 28, no. 12, pp. 3377–3386, 2018.

[40] Y. Song, C. Ma, L. Gong, J. Zhang, R. W. H. Lau, and M. Yang,
“CREST: convolutional residual learning for visual tracking,” in IEEE
Int. Conf. Comput. Vis., 2017, pp. 2574–2583.

[41] C. Huang, S. Lucey, and D. Ramanan, “Learning policies for adaptive
tracking with deep feature cascades,” in IEEE Int. Conf. Comput. Vis.,
2017, pp. 105–114.

[42] J. Gao, T. Zhang, X. Yang, and C. Xu, “Deep relative tracking,” IEEE
Trans. Image Process., vol. 26, no. 4, pp. 1845–1858, 2017.

[43] Z. Chi, H. Li, H. Lu, and M. Yang, “Dual deep network for visual
tracking,” IEEE Trans. Image Process., vol. 26, no. 4, pp. 2005–2015,
2017.

[44] Z. Cui, S. Xiao, J. Feng, and S. Yan, “Recurrently target-attending
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 1449–1458.

[45] J. S. S. III and D. Ramanan, “Tracking as online decision-making:
Learning a policy from streaming videos with reinforcement learning,”
in IEEE Int. Conf. Comput. Vis., 2017, pp. 322–331.

[46] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, “Action-driven visual
object tracking with deep reinforcement learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2239–2252, 2018.

[47] Q. Wang, Z. Teng, J. Xing, , and J. Gao, “Recurrently target-attending
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[48] Y. Song, C. Ma, X. Wu, , and M.-H. Yang, “Vital: Visual tracking
via adversarial learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018.

[49] B. Li, W. Wu, Z. Zhu, and J. Yan, “High performance visual tracking
with siamese region proposal network,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018.

[50] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.

[51] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convo-
lutional networks for classification and detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 10, pp. 1943–1955, 2016.

[52] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in Proc. ICLR, 2017.

[53] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in IEEE Int. Conf. Comput. Vis.,
2017, pp. 5068–5076.

[54] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[55] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K. Cheng, “Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 747–763.

[56] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foun. Tren. Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[57] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, “Convolutional
features for correlation filter based visual tracking,” in IEEE Int. Conf.
Comput. Vis. workshops, 2015.

[58] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, “Long-term correlation
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 5388–5396.

Chang Liu is a Ph. D. candidate at the College of
Computer Science and Technology, Harbin Institute
of Technology. He received his bachelor’s degree
of Computer Science and Technology from Harbin
Institute of Technology in 2014. His research interest
covers computer vision and pattern recognition.

Peng Liu is an associate professor at the College of
Computer Science and Technology, Harbin Institute
of Technology. He received his Ph. D. degree of
microelectronics and solid state electronics from
Harbin Institute of Technology in 2007. His research
interest covers image processing, computer vision,
and pattern recognition.

Wei Zhao is an associate professor at the College of
Computer Science and Technology, Harbin Institute
of Technology. She received her Ph. D. degree of
computer application technology from Harbin Insti-
tute of Technology in 2006. Her research interest
covers computer vision and pattern recognition. Cor-
responding author of this paper.

Xianglong Tang is a professor at the College of
Computer Science and Technology, Harbin Institute
of Technology. He received his Ph. D. degree of
computer application technology from Harbin Insti-
tute of Technology in 1995. His research interest
covers pattern recognition.

