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Highlights

• We propose the context pyramid to use multi-level contexts.

• The 3D spatial window can construct different levels with extracting fea-

ture once.

• Our method learns adaptive weights for different levels in the DCF.

• With hand-crafted features, we achieve comparable results to deep learn-

ing methods.
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Multi-level Context-Adaptive Correlation Tracking

Abstract

The discriminative correlation filter (DCF) has shown impressive performance

in visual tracking. Context has two functions in DCF: addressing the distur-

bance in target locating, and supplying cues for locating the target within the

context. To improve the context utilization, we introduce a multi-level context-

adaptive tracking (MCAT) approach for DCF tracking. Firstly, a multi-level

context representation—called a context pyramid—is proposed to exploit the

relationship between the target and its context for better visual tracking. Sec-

ondly, for each level of the context pyramid, we control the effect of context in

DCF learning and tracking using context-adaptive spatial windows. An accu-

rate target model can thereby be learned, even when the background clutter is

severe. Moreover, the target can be more easily tracked when the background

is weakened by the spatial window. Thirdly, a robust prediction of the tar-

get position is obtained with the multi-level structure of the context pyramid.

Experimental results showed that, with conventional hand-crafted features, our

tracker provided state-of-the-art performance on OTB100 comparable to those

of deep-learning-based trackers.

Keywords: Visual tracking, Correlation filter, context-adaptive tracker,

context pyramid

2010 MSC: 00-01, 99-00

1. Introduction

Visual tracking plays a significant role in computer vision and can be widely

applied in surveillance, navigation, and human-computer interaction. The most

widely considered scenario is model-free single-object tracking, wherein the ini-

Preprint submitted to Journal of LATEX Templates October 10, 2018
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(c) Tracking Comparisons

Figure 1: (a) Context pyramid representation. (b) Three-dimensional (3D) spatial window

model. (c) Comparison of the proposed multi-level context adaptive tracker (MCAT) with

the renowned CF-based trackers: ECOHC [5], CSRDCF [6], and HCF [7].

tial position and size of a target are given and should be predicted in each video5

frame. Although large datasets [1, 2, 3, 4] and many outstanding researchers

have enabled significant advancements, it remains challenging to successfully

track any target in various video sequences. This is because several factors

should be simultaneously considered, including target and background varia-

tions, such as deformation, pose variation, fast motion, background clutter, and10

occlusion.

Discriminative methods [8, 9, 10] have recently shown good performances.

In these methods, visual tracking is formulated as a binary classification or

regression problem to distinguish the target from the background. Tracking
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based on a correlation filter, [11, 12, 13] are the most renowned approach because15

of the high precision and high speed. An online correlation filter is learned from

the region of interest in the current frame and applied in the next frame to

predict the target location with the maximum response.

Correlation filters can be efficiently implemented with the Fast Fourier trans-

form (FFT); nevertheless, the bound effect [14, 15] is unavoidable because the20

samples are regarded as periodic ones. The original correlation filters use a

spatial window to restrain the features in the window boundary. The spatial

window strategy can reduce the bound effect while also reducing the field of in-

terest in the window. This is because the target located closer to the boundary

will be more difficult to track. Another limitation is that the samples should25

have the same size in the regions of interest in learning and tracking. A rect-

angle window is typically utilized to represent the region of interest. However,

a contradiction occurs. A tracker with a small window size will suffer from fast

motion. Once the target moves beyond the window, the tracker fails. Further-

more, a large window size will suffer from background clutter. The learned filters30

are more influenced by the background and more distractors will be included

by the window. However, existing trackers based correlation filters typically

employ a fixed window size and fixed spatial window. It is difficult to achieve a

good compromise between fast motions and background clutter.

In this paper, we introduce a context pyramid representation, which is shown35

in Figure 1(a). With this representation, we combine the target with different

context levels and jointly learn correlation filters for them. In other words, we

utilize a three-dimensional (3D) window to train the 3D correlation filters. As

mentioned above, the spatial window can influence the field of interest. Accord-

ingly, we utilize a fixed window size for simplicity and apply a different spatial40

window for each level to achieve a 3D context representation as shown in Figure

1(b).

The top levels of the pyramid contain minimal background content. The

corresponding correlation filters provide a better description of the target and

are reliable in ordinary tracking. The low levels of the pyramid contain vary-45
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ing degrees of backgrounds. The corresponding correlation filters explore more

relationships between the target and background, and they are helpful in cases

of occlusions and distractors. The whole pyramid will comprises a complete

representation of the target and its context.

In addition, we propose a method of controlling the effect of backgrounds in50

different levels both in learning and tracking. Specifically, the 3D spatial win-

dows in learning and tracking are carefully designed for the context pyramid.

Furthermore, the correlation filters are jointly learned for the pyramid repre-

sentation, and the target is tracked with adaptive prediction fusion. We evalu-

ated the proposed multi-level context-adaptive tracking (MCAT) method on the55

tracking benchmark OTB2015 [2]. As shown in Figure 1(c), with hand-crafted

features, the proposed tracker demonstrates favorable performance against state-

of-the-art methods, such as ECO-HC [5], CSRDCF [6], which are based on

hand-crafted features, and HCF [7], which is based on deep convolution neural

networks.60

2. Related Work

In this section, related tracking methods are discussed, primarily with re-

spect to discriminative correlation filters.

Correlation filters were introduced to visual tracking by MOSSE [11], and

a remarkably high speed was obtained using the fast Fourier transform (FFT).65

The feature representation was then extended into multi-channels, such as Col-

ornames [13] and HOG [16]. In CSK [17] and the later KCF [12], the correlation

filters model is interpreted with circular samples, and the tracking problem is

translated into a regression problem. DSST [18] was proposed as a discrimina-

tive scale space filter and can efficiently estimate the target scale. SAMF [19]70

integrates HOG and CN features. Additionally, it simultaneously estimates the

target scale and position in several scale samples. Many other improvements

have been implemented in correlation filters, such as part-based [20, 21, 22],

long-term [23], response adaptive [24], training set adaptive [25], and CNN
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based [7, 26, 5] methods.75

Correlation filters have a bound effect, which means incorrect information

exists in the circular samples. A detailed explanation is provided in [14]. The

bound effect is inevitable on account of the FFT. Some methods have been

proposed to reduce the bound effect. A Hann spatial window is used to weight

the features in CF trackers, ranging from the original MOOSE [11] to the latest80

ECO [5]. However, it is minimally or not at all effective when the window size is

enlarged. CFLB [15] uses a masking matrix to cut the circular samples, and it

was improved into BACF [27] for multi-channel tracking. Moreover, CSRDCF

[6] was proposed for spatially constrained correlation filters that constrain the

filters to desired shapes. Both BACF and CSRDCF have good discrimination85

against backgrounds. However, they lack utilization of the background and

perform poor in cases of occlusion. SRDCF [14] places a penalty weight on

the filters to learn spatially regularized correlation filters. C-COT [28] learns

continuous correlation filters for multi-resolution features based on SRDCF.

ECO [5] introduces efficient convolution operators for C-COT. It has remarkable90

performance but causes errors in some cases of occlusion and background clutter

with hand-crafted features.

Meanwhile, the context model is helpful in tracking [1]. The context means

the target and its surrounding backgrounds. In a context-aware tracker [29],

auxiliary objects are mined to help track the target. Actually, the correla-95

tion filters regard the context as a whole and track it accordingly. Thus, the

correlation filters can potentially utilize the background information. CACF

[30] extracts surrounding backgrounds to jointly learn the filters, with the base

sample. DAT [31] discriminates the target from the background by using a

statistic color histogram. Staple [32] combines KCF with DAT for complemen-100

tary learners. CSRDCF [6] utilizes DAT to segment the target before learning

stage to reduce the effect of background. Moreover,background restriction has

shown advantages in the learning stage. Inspired by SWCF [33], which itera-

tively optimizes the spatial window to achieve better performance, we propose

a context-adaptive spatial window by restricting the backgrounds. We contend105
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Figure 2: Framework of the proposed MCAT method. In the learning stage, a 3D spatial

window is weighted on the base learning sample to achieve a context pyramid representation.

By jointly learning the multi-level representation, 3D correlation filters can be obtained to

update the DCF models. In the tracking stage, another 3D spatial window is used to obtain

the 3D context-adaptive sample. The multi-level responses are adaptively fused to produce

robust prediction by jointly tracking.

that background restriction can also be beneficial in the tracking stage.

Furthermore, multi-kernel, multi-template, and multi-task learning methods

have made progress in correlation filters [34, 35, 36, 37]. It is noteworthy that

a small amount of background is utilized in smooth tracking, whereas a large

amount of background is required to locate the target when it rapidly varies or110

is occluded. Accordingly, we introduce a multi-level context structure that is

robust against the above various challenges by jointly learning and tracking the

multi-level contexts.

3. Proposed Approach

In this section, we firstly review the original discriminative correlation filters.115

Then, the context pyramid representation is proposed. From that point, the 3D

context-adaptive spatial windows are introduced. Finally, we jointly learn and

track with the pyramid in a multi-level structure. The framework of our method

is deplicted in Figure 2.
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3.1. Discriminative Correlation Filters120

Multi-channel discriminative correlation filters were introduced in [18]. In

the learning stage, a base sample representation f is extracted at the position

of the target with d feature channels. For each feature channel l ∈ 1, ..., d, f l

and hl denote the corresponding feature and filter. The objective is to learn a

correlation filter h by minimizing the error of the correlation response compared

to the predefined output g,

min
h
||g −

d∑

l=1

hl ∗ f l||22 + λ

d∑

l=1

||hl||22, (1)

where ∗ denotes the circular correlation operator, and λ is a regularization

parameter. The output, g, typically has a Gaussian function [11].

The minimizer has a closed-form solution in the Fourier domain using the

Parseval’s formula,

H l =
GF l

∑d
k=1F

kF k + λ
, l = 1, ..., d, (2)

where the capital letters denote the discrete Fourier transform (DFT) of the

corresponding quantities, such as H = DFT (h), which hence defines the capital

letters hereafter.125

The filters are updated online in the approach introduced in MOOSE [11]

with a forgetting factor η,

H l
t =

Alt
Bt
, l = 1, ..., d

Alt = (1− η)Alt−1 + ηGF lt , l = 1, ..., d

Bt = (1− η)Bt−1 + η
d∑

k=1

F kt F
k
t .

(3)

In the tracking stage, a new sample representation, z, is extracted from

the region of interest. The new correlation response y can be obtained by fast

tracking,

Y =
d∑

l=1

H lZl, (4)

9
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where Y = DFT (y), Z = DFT (z).

The target is located where y is the maximum. In addition, the training

sample f and tracking sample z are weighted with a fixed spatial window in the

feature extraction stage to restrain the bound effect.

3.2. Context Pyramid Representation130

Context is defined as the target along with its surrounding background. The

context can indicate the latent relationship between the target and background.

In DCF tracking, the context is learned and tracked as a whole. In the ordinary

tracking process, the backgrounds should be restricted in the context because

less background will contribute to a more precise target model. Nevertheless,135

in considering challenges, such as occlusion and target loss, the context that

contains more background will be more beneficial to locating the target. Ac-

cordingly, we propose a context pyramid representation in which different levels

contain varying degree of backgrounds.

An n-levels context pyramid representation for the sample in the region of140

interest is defined as r = {ri, i = 1, ..., n}. A higher level will contain less

background. However, it is time-consuming to extract features for each level.

In addition, it is not suitable to learn the pyramid in a joint framework because

different levels have different sizes.

To jointly and conveniently learn the 3D filters, we utilize a fixed window

size (W,H) for targets with size (w, h) and the extended spatial window model

to realize the context pyramid. For each level i of the pyramid, the backgrounds

are restricted to different degrees, and the sample is represented by weighting a

base sample f with a spatial windowi pi,

ri = pi � f, i = 1, ..., n. (5)

Here, pi with a larger i will allocate lower weights to backgrounds to restrict145

their effect. Its calculation is introduced in the Section 3.3.

In this way, the feature extraction must be conducted only once, and all

levels have a consistent sample size. Meanwhile, we can use the gradual weights

10
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to smoothly reduce the backgrounds. However, the spatial window for each level

should be finely designed to meet the requirement of the pyramid structure.150

Moreover, the original discriminative correlation filters can be regarded as a

single-level context pyramid. The context pyramid model extends the represen-

tation of the sample, thereby providing a more complete relationship between

the target and the surrounding background for tracking.

3.3. Context-Adaptive Spatial Windows155

In the context pyramid, different context levels contain varying degrees of

backgrounds to describe different levels of the latent relationship. We utilize

the spatial window strategy where greater weights are placed on the target and

smaller ones are placed on the backgrounds to reduce them. The spatial window

should be flexible and adaptive to different context levels to construct a good160

pyramid.

We introduce the 3D context-adaptive spatial windows. The backgrounds

are reduced to varying degrees in different levels both in the learning and track-

ing stages. The spatial window strategy results in a feature transformation

from the original sample to a background reduced domain. It is notable that165

the closet solution and fast tracking in DCF are preserved.

In the learning stage, the target is located in the center of the window.

Hence, pixels farther from the center are more likely to be parts of the back-

ground. In the original DCF, the spatial window is a Hann window,

pcos = hann(W ) ∗ hann(H)′,

hann(W ) =
1

2
(1− cos(2π(0 : W − 1)′)

(W − 1)
).

(6)

This Hann window is adaptive to the window size (W,H). However, it can

neither adapt the aspect ratio of the target nor change the field of interest in

the window. To learn a good relationship between the target and backgrounds,

the background should be evenly distributed around the target. Meanwhile,170

the Hann window cannot adapt to the different context levels. A higher level i

should have a wider field of interest.
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Figure 3: Examples of Hann (left) and Gaussian (right) windows weighted on the learning

sample.

Therefore, the Gaussian window is introduced: for each level i of the pyra-

mid,

pi = gauss(W,
h

H
θi) ∗ gauss(H,

w

W
θi)
′,

gauss(W, θ) = e−
1
2 (θ

−W/2:W/2
W/2

)2 .

(7)

As shown in Figure 3, the spatial window has an aspect ratio that differs

from that of the target. The Hann window effectively restricts the backgrounds

in the vertical direction; nonetheless some background remains in the horizontal175

direction. The Gaussian window can retain the features of the target, whereas

it restricts those of the surrounding backgrounds. A higher level i in the context

pyramid has a lower θi and thus a wider field of interest.

In the tracking stage, the corresponding spatial windows q = {qi, i = 1, ..., n}
are introduced to reduce the backgrounds. However, the target can be situated

anywhere, and thusly is the background. To adapt different context levels,

we estimate the target distribution and set varying weights t for different levels.

Intuitively, the distribution of the target is predicted based on Bayesian inference

from views of spatial and value domains,

qi(x) = qs(x)(tiqv(I(x)) + 1− ti), (8)

where qs and qv are the spatial and value weights to denote the probabilities

that the target appears in each pixel from views of spatial and value domains,180

respectively. x denotes any pixel in the sample, and I(x) is the value of x. In

12
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addition, ti is a parameter relative to the level of the pyramid and it ranges in

[0, 1]. A larger ti will restrict more backgrounds.

From the spatial view, the center of the sample is located where the target

is situated in the last frame. Thus, the target is more likely to remain close to

the center. Hence, qs is defined as

qs(x) = pγcos(x), (9)

where pcos is explained in (6), and γ is a parameter that controls how likely the

target is to leave the center of the sample.185

With respect to value, a color belongs to the target with more probabilities

when more pixels with the given color belongs to the target [31]. Thus, the

model can be summarized as

qv(j) =





ρO(j)
ρO(j)+ρB(j) , ifj ∈ O⋃

B

0.5, Otherwise

(10)

where j denotes any color. O and B indicate the target and the background,

respectively, and ρ represents the color histogram.

Some weighted tracking samples are demonstrated in Figure 4. By control-

ling parameters ti and γ, the spatial window can be adaptive to different context

levels.190

3.4. Multi-level Context-Adaptive Correlation Tracking

In the context pyramid, each single-level can be used to train a tracker.

However, the target can be tracked only in a scene wherein the backgrounds are

restricted to a fixed degree. When considering the general tracking problem,

we find that the restriction on backgrounds should be more flexible. Different195

relationship levels can be learned from different context levels. All levels should

be simultaneously considered. Hence, the multi-level context-adaptive correla-

tion tracking method is proposed to learn and track using the context pyramid

representation in a joint framework.
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Figure 4: Backgrounds restricted samples with different ti and γ. Here, the spatial windows

are weighted on the image for visualization. In our method, they are weighted on the features.

A greater γ will lead to a narrower field of interest, and the target is considered to scarcely

move. A greater ti contributes to restricting the backgrounds.

In the learning stage, we simply allocate weights α, where
∑n
i=1αi = 1, to

different levels and jointly learn the correlation filters,

min
h
||g −

n∑

i=1

αi

d∑

l=1

hli ∗ rli||22 + λ

n∑

i=1

d∑

l=1

||hli||22. (11)

The objective function can be solved similar to the approach in (1),

H l
i =

αiGR
l
i∑n

i=1α
2
i

∑d
k=1R

k
iR

k
i + λ

,




l = 1, ..., d

i = 1, ..., n

, (12)

where R denotes the discrete Fourier transforms of the corresponding quantities200

r. rli and hli denote the ith level and the lth channel.

In the tracking stage, a corresponding correlation response can be obtained

by

Y =
n∑

i=1

αi

d∑

l=1

H l
iZ

l
i . (13)

14
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However, different levels of the context pyramid have different influences at

different moments. Fixed parameter α is unfavorable in the tracking process.

Because the background should be more greatly reduced when the target moves

smoothly, whereas it should be less restricted when the target rapidly changes205

or is occluded. In other words, the reliability of each single-level varies in the

tracking process. More weights should be placed on more reliable levels in every

instant. Accordingly, we propose an adaptive method to rearrange the weights

α to β as the specific tracking environment changes.

Firstly, the prediction reliability of each level should be evaluated. We utilize

the high-confidence average peak-to-correlation energy (APCE) measure [38].

APCEy =
N |ymax − ymin|2∑
x(y(x)− ymin)

, (14)

where N is the number of features in the sample, and ymax and ymin are the210

respective maximum and minimum value of the response y.

Secondly, we define the prediction loss of each level as

Li =
1

APCE2
yi

, (15)

where yi is the inverse discrete Fourier transform of Yi =
∑d
l=1H

l
iZ

l
i . A more

reliable prediction response with context level i has a greater APCE value and

thus a smaller Li.

Thirdly, the objective of the joint tracking can be denoted as minimizing the

loss of all levels,

min
β

n∑

i=1

βiLi + λL

n∑

i=1

β2
i

α2
i

,

s.t.

n∑

i=1

βi = 1,

βi ≥ 0, i = 1, ..., n,

(16)

where λL is a regularization parameter. When the λL inclines to the infinite,215

the solution will be β = α. The weights will not change. When the λL is zero,

the solution will be all zeros except the one with the smallest loss. Only one

level of the pyramid will be selected. With a proper λL, the weights will move

from low reliable levels to high ones by solving the above optimization problem.

15
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Equation (16) is a convex quadratic programming, and can be efficiently

solved. With the learned β, the response of the current frame can be revised by

Y =
n∑

i=1

βiYi. (17)

A threshold strategy is used to reduce error update in tracking process.220

When the APCE value of y in the current frame is greater than its historical

average value with a certain ratio, µ, the tracking result is considered reliable.

The correlation filter model is updated in the approach similar to (3).

4. Experimental Analysis

To evaluate the proposed MCAT method, we first detail the implementation.225

Then, we analyze the effectiveness of different MCAT components. Finally,

many experimental results and analyses are provided.

4.1. Implementation Details

The widely-used Colornames [13] and HOG [16] features were implemented.

The scale-adaptive strategy involved was the same as SAMF [19], which tracked230

the target in seven scale samples. The scale step was 1.01. Our tracker ran at

an average speed of 22.5 frames per second (FPS) using MATLAB R2016b on a

3.6GHz Intel Core i7 PC with 16 G RAM. The sample window was a square block

with an area of 12 times that of the target. We used a three-level structure to

represent the pyramid for simplicity and named them levels 1, 2, and 3 from the235

bottom to the top of the pyramid, respectively. The detailed parameters were

λ = 10−4, γ = 0.4, n = 3, θ = [10, 15, 20], t = [0.2, 0.6, 1], α = [0.25, 0.25, 0.5],

λL = 0.0005, η = 0.009, and µ = 0.2.

Our method was evaluated on the object tracking benchmark (OTB100) [2]

with 100 video sequences. Two criteria for one-pass evaluation were used to240

assess the performance. The distance precision (DP) score denoted the percent-

age of successfully tracked frames that the center position error did not exceed

the threshold of 20 pixels. The area under the curve (AUC) score was the area

16
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under the success rate curves that indicated the average overlap rate at different

thresholds. The overlap score of the predicted target region Rt and its ground245

truth Rg is defined as S = Rt
⋂
Rg

Rt
⋃
Rg .

Our method was further evaluated on the 2016 visual object tracking (VOT2016)

benchmark [4] with 60 video sequences. The mostly used criteria is expected

average overlap (EAO), and a higher value indicates a better tracker.

4.2. Components Evaluations250

We evaluated the effectiveness of different components, including the context-

adaptive spatial window methods, the pyramid representation or multi-level

structure, and the adaptive fusion of multi-level prediction responses.

4.2.1. Context-adaptive spatial window evaluations

The context-adaptive methods were used to restrict the backgrounds in255

learning and tracking. To check their dependent effect, a baseline SAMF [19]

with a linear kernel was implemented and analyzed on the OTB100. We tested

a single-level spatial window. Firstly, the baseline was tested with an expanded

sample region. Secondly, the proposed learning spatial window in (7) was imple-

mented. Thirdly, the method was equipped with the proposed tracking window260

in (8). The four configurations were those with the same common parameters.

We simply append the components, step by step, without further parameter

tuning. The experimental results are shown in Table 1.

The expanded region helped track the target in the case of fast motion.

However, the SAMF performance was reduced because of the increased amount265

of background. Our learning spatial window enabled the sample features to

be adaptive to the sizes of the target and sample. The improved performance

with the tracking windows confirmed that background restriction in tracking

was helpful. The time consumption resulting from the expanded region and

background detection was unavoidable but affordable.270

Two different scale strategies were tested on different MCAT levels. As men-

tioned above, they were SAMF [19] and DSST [18]. The experimental results

17
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Baseline Expanded Learning Tracking

SAMF Region Window Window

AUC 0.562 0.557 0.573 0.583

DP 0.748 0.734 0.77 0.82

FPS 52.6 40 39.7 26.8

Table 1: Analysis of our context adaptive spatial windows on OTB100.

Level 1 Level 2 Level 3

SAMF DSST SAMF DSST SAMF DSST

AUC 0.579 0.549 0.64 0.62 0.634 0.593

DP 0.758 0.742 0.853 0.844 0.848 0.806

Table 2: Comparison of the scale adaptive strategies SAMF [19] and DSST [18] for different

levels of MCAT on OTB100.

are listed in Table 2. As shown in the table, Level 1 contains a large amount

of background, it is easily influenced by the background. Level 2 contains less

background and level 3 most notably restricts the background. They both per-275

formed well. Level 2 is somewhat better because the surrounding background

is helpful for predicting the target location. Level 3 focuses almost only on the

target and will fail once the target is occluded or rapidly changes. Different

levels have different performances because varying degrees of backgrounds were

used. SAMF performed better than DSST with our methods because SAMF280

estimates the scale and the location simultaneously, whereas DSST estimates

the scale after locating the target. Thus, SAMF was finally implemented in our

tracker.

4.2.2. Multi-level context adaptive correlation tracking evaluations

We compared the MCAT with or without the adaptive prediction fusion on285

OTB100. A complete MCAT tracker was tested. MCAT1, MCAT2, MCAT3

denote 3 different levels of the MCAT tracker, respectively. MCATf was the
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Figure 5: Comparisons of MCATs with different configurations. The precision plots and

success plots are demonstrated. The legends are the DP scores at the threshold of 20 as well

as the AUC scores. Different levels show different performances, and the proposed adaptive

prediction fusion method is shown to be helpful.

MCAT tracker with fixed prediction parameter α with (13). The comparisons

are shown in Figure 5. Different levels have different performances. The sec-

ond level (MCAT2) performed best with an AUC score of 0.64 and a precision290

score of 0.853. The prediction fusion with fixed parameters (MCATf) slightly

improves the performance as the AUC score is increased from 0.64 to 0.642

and the precision score is creased from 0.853 to 0.859. However, with the pro-

posed adaptive prediction fusion method, the tracker is significantly improved

as the AUC score is increased raised from 0.64 to 0.657 and the precision score295

is increased from 0.853 to 0.882.

To further elucidate the multi-level joint tracking method, we obtained the

video Walking2 as an example. Figure 6 depicts the real-time fusion parameter

plots. When the person moves smoothly, the three levels perform well. The

Level 3 contains the least background. Thus, it is regarded as the most reliable300

in general tracking and is set as the greatest weight. However, when the target

is occluded, as shown in Figure 6(b), Level 3 shows a large error in frame 204.

The tracker would have turned to track the other person if fixed parameters

were used. Nonetheless, the adaptive fusion method allocates more weights

on the low levels, as shown in Figure 6(a), and tracks the target successfully.305
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Therefore, the proposed adaptive prediction fusion method can make different

levels complementary.

4.3. State-of-the-Art Comparison

Using OTB100 [2], the proposed MCAT was compared with nine state-of-

the-art trackers based on hand-crafted features, including ECOHC [5], CSRDCF310

[6], LCT [23], SRDCF [14], SAMF [19], DSST [18], Staple [32], Struck [10], and

TLD [9]. We report the overall performance for one-pass evaluation (OPE) in all

100 videos, as shown in Figure 7. Our method yields the best performance with

an AUC score of 65.7% and a DP score of 88.2%. Among the others, ECOHC

ranks second with an AUC score of 64.3% and a DP score of 85.6%.315

Using OTB100, the 100 videos were annotated with 11 attributes represent-

ing the challenges of illumination variation (IV), scale variation (SV), occlusion

(OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rota-

tion (IPR), out-of-plane rotation (OPR), out of view (OV), background clutter

(BC), and low resolution (LR). Each video was labelled with several of the chal-320

lenges. The success rate plots and AUC scores of the ten trackers in OTB100 are

depicted in Figure 8. MCAT and ECOHC perform better than the other track-

ers under all challenges. MCAT exhibits the best performance in terms of AUC

score in nine attributes: IV (65.9%), SV (62.2%), DEF (61.5%), MB(63.8%),

IPR(61.2%), OPR (63.2%), OV (62.1%), and BC (66.7%). In the remaining325

two attributes, MCAT also performs similar to ECOHC.

Some studies of deep-learning-based methods have also reported the per-

formances, such as CNN-features based trackers: ECO [5], MCPF [36], Deep-

SRDCF [39], HCF [7], HDT [26], CNN-SVM [40], DNN ones, MDNet [41],

CREST [42], DNT [43], PTAV [44], and ADNet [45]. We list their overall per-330

formance criteria in Table 3. It is evident that our method MCAT performs

better than most deep learning methods and ranks third. Only ECO with CNN

features and MDNet perform better than MCAT using hand-crafted features.

With VOT2016, the proposed method was compared with four state-of-the-

art trackers including DeepSRDCF [39], SRDCF [14], SAMF [19], and DSST335
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MCAT ECO MCPF DeepSRDCF HCF HDT

AUC 0.657 0.694 0.628 0.635 0.562 0.564

DP 0.882 0.91 0.873 0.851 0.837 0.848

CNNSVM MDNet CREST DNT PTAV ADNet

AUC 0.554 0.678 0.623 0.627 0.635 0.646

DP 0.814 0.909 0.837 0.851 0.849 0.88

Table 3: Comparison of MCAT with recent deep-learning-based methods. The top three are

labeled in red, green, and blue. MCAT shows a better performance than most deep learning

methods and ranks third.

[18]. Fig. 9 shows the EAO, A and R comparisons. MCAT1 is a single-level

tracker with an EAO of 0.2538, and is better than the SRDCF with an EAO

of 0.2471. MCAT is a 3-level configuration and gets a best EAO of 0.2821, and

is better than the deep features based DeepSRDCF with an EAO of 0.2763.

VOT is a very challenging benchmark, where background clutters are serious340

and target rotations are common, so exploiting high-level vision features such as

deep features will help. But with hand-crafted features, the multi-level MCAT

achieves the best performance. It reveals that our method makes the best of

the feature structure.

5. Conclusion345

In this paper, we presented a context pyramid representation for visual track-

ing. This representation can better describe the relationships between the target

and its surrounding backgrounds than traditional representations. We proposed

a 3D spatial window to adaptively construct different context levels. The feature

extraction must be processed only once and the spatial windows of different lev-350

els contribute to different context levels. For each level of the context pyramid,

the context adaptive strategy is introduced to restrict the background both in

learning and tracking stages. The strategy is adaptive to the size of the target

and samples.
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In addition, our approach jointly learns and tracks the context pyramid355

by allocating weights to different levels in the discriminative correlation filters

framework. Additionally, the adaptive weights estimation method achieves a

complement among different context levels. Furthermore, by means of extensive

experimental results, our tracker demonstrates promising performance with ex-

tensive experimental results. Using hand-crafted features, our method achieves360

comparable precision to deep learning methods.

References

References

[1] Y. Wu, J. Lim, M.-H. Yang, Online object tracking: A benchmark, in:

CVPR, 2013, pp. 2411–2418.365

[2] Y. Wu, J. Lim, M.-H. Yang, Object tracking benchmark, PAMI 37 (9)

(2015) 1834–1848.

[3] M. Kristan, J. Matas, A. Leonardis, The visual object tracking vot2015

challenge results, in: ICCV Workshop, 2015, pp. 564–586.

[4] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. ehovin,370

T. Vojr, G. Hger, A. Lukei, G. Fernndez, The Visual Object Tracking

VOT2016 Challenge Results, Springer International Publishing, 2016.

[5] M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg, Eco: Efficient convolution

operators for tracking, in: CVPR, 2017, pp. 6931–6939.

[6] A. Lukei, T. Voj, L. ehovin, J. Matas, M. Kristan, Discriminative cor-375

relation filter with channel and spatial reliability, in: CVPR, 2017, pp.

4847–4856.

[7] C. Ma, J.-B. Huang, X. Yang, M.-H. Yang, Hierarchical convolutional fea-

tures for visual tracking, in: ICCV, 2015, pp. 3074–3082.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] B. Babenko, M.-H. Yang, S. Belongie, Visual tracking with online multiple380

instance learning, in: CVPR, 2009, pp. 983–990.

[9] Z. Kalal, K. Mikolajczyk, J. Matas, Tracking-learning-detection, PAMI

34 (7) (2012) 1409–1422.

[10] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks,

P. H. Torr, Struck: Structured output tracking with kernels, PAMI 38 (10)385

(2016) 2096–2109.

[11] D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui, Visual object

tracking using adaptive correlation filters, in: CVPR, 2010, pp. 2544–2550.

[12] J. F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking

with kernelized correlation filters, PAMI 37 (3) (2015) 583–596.390

[13] M. Danelljan, F. Shahbaz Khan, M. Felsberg, J. Van de Weijer, Adaptive

color attributes for real-time visual tracking, in: CVPR, 2014, pp. 1090–

1097.

[14] M. Danelljan, G. Hager, F. Shahbaz Khan, M. Felsberg, Learning spatially

regularized correlation filters for visual tracking, in: ICCV, 2015, pp. 4310–395

4318.

[15] H. Kiani Galoogahi, T. Sim, S. Lucey, Correlation filters with limited

boundaries, in: CVPR, 2015, pp. 4630–4638.

[16] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,

in: CVPR, 2005, pp. 886–893.400

[17] C. Rui, P. Martins, J. Batista, Exploiting the circulant structure of

tracking-by-detection with kernels, in: ECCV, 2012, pp. 702–715.

[18] M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Discriminative scale

space tracking, PAMI 39 (8) (2017) 1561–1575.

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[19] Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature405

integration, in: ECCV, 2014, pp. 254–265.

[20] Y. Li, J. Zhu, S. C. H. Hoi, Reliable patch trackers: Robust visual tracking

by exploiting reliable patches, in: CVPR, 2015, pp. 353–361.

[21] T. Liu, G. Wang, Q. Yang, Real-time part-based visual tracking via adap-

tive correlation filters, in: CVPR, 2015, pp. 4902–4912.410

[22] S. Liu, T. Zhang, X. Cao, C. Xu, Structural correlation filter for robust

visual tracking, in: CVPR, 2016, pp. 4312–4320.

[23] C. Ma, X. Yang, C. Zhang, M.-H. Yang, Long-term correlation tracking,

in: CVPR, 2015, pp. 5388–5396.

[24] A. Bibi, M. Mueller, B. Ghanem, Target response adaptation for correlation415

filter tracking, in: ECCV, 2016, pp. 419–433.

[25] M. Danelljan, G. Hger, F. S. Khan, M. Felsberg, Adaptive decontamination

of the training set: A unified formulation for discriminative visual tracking,

in: CVPR, 2016, pp. 1430–1438.

[26] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, M. Yang, Hedged deep420

tracking, in: CVPR, 2016, pp. 4303–4311.

[27] H. K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation

filters for visual tracking, in: ICCV, 2017, pp. 1144–1152.

[28] M. Danelljan, A. Robinson, F. S. Khan, M. Felsberg, Beyond correlation

filters: Learning continuous convolution operators for visual tracking, in:425

ECCV, 2016, pp. 472–488.

[29] M. Yang, Y. Wu, G. Hua, Context-aware visual tracking, PAMI 31 (7)

(2009) 1195–1209.

[30] M. Mueller, N. Smith, B. Ghanem, Context-aware correlation filter track-

ing, in: CVPR, 2017, pp. 1387–1395.430

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] H. Possegger, T. Mauthner, H. Bischof, In defense of color-based model-free

tracking, in: CVPR, 2015, pp. 2113–2120.

[32] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P. H. Torr, Staple:

Complementary learners for real-time tracking, in: CVPR, 2016, pp. 1401–

1409.435

[33] E. Gundogdu, A. A. Alatan, Spatial windowing for correlation filter based

visual tracking, in: ICIP, 2016, pp. 1684–1688.

[34] M. Tang, J. Feng, Multi-kernel correlation filter for visual tracking, in:

ICCV, 2016, pp. 3038–3046.

[35] A. Bibi, B. Ghanem, Multi-template scale-adaptive kernelized correlation440

filters, in: ICCV Workshop, 2015, pp. 613–620.

[36] T. Zhang, C. Xu, M.-H. Yang, Multi-task correlation particle filter for

robust object tracking, in: CVPR, 2017, pp. 4819–4827.

[37] L. Zhang, P. N. Suganthan, Robust visual tracking via co-trained kernelized

correlation filters, Pattern Recognition.445

[38] M. Wang, Y. Liu, Z. Huang, Large margin object tracking with circulant

feature maps, in: CVPR, 2017, pp. 4800–4808.

[39] M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Convolutional features

for correlation filter based visual tracking, in: ICCV Workshop, 2015, pp.

621–629.450

[40] S. Hong, T. You, S. Kwak, B. Han, Online tracking by learning discrimina-

tive saliency map with convolutional neural network, in: ICML, 2015, pp.

597–606.

[41] H. Nam, B. Han, Learning multi-domain convolutional neural networks for

visual tracking, in: CVPR, 2016, pp. 4293–4302.455

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[42] Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, M. H. Yang, Crest: Convolu-

tional residual learning for visual tracking, in: ICCV, 2017, pp. 2574–2583.

[43] Z. Chi, H. Li, H. Lu, M. H. Yang, Dual deep network for visual tracking,

TIP 26 (4) (2017) 2005–2015.

[44] H. Fan, H. Ling, Parallel tracking and verifying: A framework for real-time460

and high accuracy visual tracking, in: ICCV, 2017, pp. 5487–5495.

[45] S. Yun, J. Choi, Y. Yoo, K. Yun, Y. C. Jin, Action-decision networks for

visual tracking with deep reinforcement learning, in: CVPR, 2017, pp.

1349–1358.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

level 1
level 2
level 3

(a)

(b)

Figure 6: Real-time fusion parameter plots in the video Walking2, and some snapshots. Level

3 causes errors when the target is occluded. Thus, our adaptive fusion method reduces its

weight and accurately predicts the target location.
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Figure 7: Comparisons of MCAT with state-of-the-art trackers on OTB100. The DP scores

and AUC scores are respectively shown in the legends. Our approach shows the best perfor-

mance.
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Figure 8: Success rate plots of different challenges in OTB100. The legends contain the AUC

scores.
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Figure 9: Experimental results on VOT2016 with respect to expected average overlap (EAO).
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